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The topology of isofrequency surface governs the electromagnetic wave propagation and
light–matter interaction in metamaterials. For most metamaterials with local medium
description, the low-frequency isosurfaces are typical spheres or ellipsoids centered at
zero momentum, which, to some extent, limits our manipulation ability on low-frequency
wave. In this work, based on connection-type wire metamaterials, we propose a scheme
to engineer the shapes of isofrequency surfaces. An equivalent circuit model is developed
to analyze the low-frequency dispersion of connection-type metamaterials. It implies that
the shape of index ellipsoids at quasistatic limit is determined by the equivalent
inductances and capacitances of the metallic meshes. By adjusting these equivalent
circuit parameters, we can achieve the isotropic or anisotropic index ellipsoids at
quasistatic limit and, hence, a cruciform or bowtie-shaped isofrequency contours for
the lowest-frequency band. Our results demonstrate a feasible platform for topological
engineering of isofrequency surfaces, which may pave the way to novel devices for
manipulating long-wavelength electromagnetic wave.
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1 INTRODUCTION

The isofrequency surfaces (IFSs) of a medium play an important role in determining the
electromagnetic (EM) wave propagation[1] and light–matter interactions [2, 3] inside the
medium. For a natural material, the shape of IFSs depends on its microscopic atomic
arrangement and is usually an isotropic sphere or an anisotropic ellipsoid in k space.
Metamaterials (MMs) [4–10], artificially synthesized materials with subwavelength
microstructures, can exhibit various types of closed/open IFSs with exotic topologies (concave
sphere [11, 12], hyperboloid [2, 3, 13, 14], cuboid [15, 16], etc.), which lead to anomalous wave
phenomena (negative refraction [1, 11, 12], subwavelength imaging [17–20], self-collimation [15, 16,
21, 22], etc.) alongside numerous engineering applications. However, since their unnatural responses
rely on the EM resonance of metallic structures [4, 5, 10], these exotic IFSs and associated
phenomena only occur near the resonant frequency, which limits their working bandwidth.
Also, when the wave frequency approaches quasistatic limit, the IFSs of these artificial media
usually deteriorate to an ordinary ellipsoid centered at a zero k-point.

It would be highly desirable if the shapes of low-frequency IFSs can be customized at will, then we
could control the EM wave propagation behavior in a relatively broader bandwidth. It is well known
that metallic wire medium [4, 23–40], such as disconnected wire arrays, can exhibit the strong spatial
dispersion (nonlocal effect) even in long-wavelength limit [25, 26]. By incorporating two or more sets
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of metallic meshes, one can engineer the density of states at
quasistatic limit [28, 32, 33]. The EM properties of these
multiple interlocking meshes are governed by electric circuit
equations [28, 29] rather than Maxwell equations [41]; they are,
thus, called non-Maxwellian medium. Interestingly, researchers
[33] found that the global connectivity of these metallic meshes can
introduce a momentum shift of the low-frequency index ellipsoid
away from the zero k-point. Recently, wire medium again attracted
the attention of researchers, since it could serve as a new design
degree of freedom to tailor the low-frequency dispersion [34–37]
and associated wave properties [38–40] of MMs.

In this study, based on connection-type MMs [28, 32–34, 36]
that support multiple quasistatic modes at a nonzero k-point, we
propose a scheme to engineer the shapes of low-frequency IFSs. As
frequency increases from zero, isotropic or anisotropic index
ellipsoids emerge from these nonzero k-points. By properly
shaping the index ellipsoids, one can, in principle, realize
arbitrary-shaped isofrequency contours (IFCs) even for the
lowest frequency band. The benefit of our method is that it
may provide a novel way for manipulating long-wavelength EM
wave. To illustrate our idea clearly, we focus on a 2D slab of
connection-type MMs, instead of complex 3D MMs. We develop
an equivalent circuit model for the connection-type MMs to
describe their low-frequency EM behaviors. The model implies
that the shape of index ellipsoids can be engineered via the
equivalent inductances and capacitances of the metallic meshes,
which are determined by the structural details of the meshes. By
appropriately adjusting the metallic structure, we can achieve
isotropic or anisotropic index ellipsoids with different group
velocities, which agree well with our equivalent circuit model.

2 RESULTS

Connection-type MMs are a type of MMs composed of N sets of
interpenetrating metallic meshes, which support (N−1)

quasistatic modes lying at a nonzero k-point. Their positions
in k space are determined by the global connectivity of the
meshes, rather than the structural detail of the meshes. For
instance, 2D double-mesh MMs with square lattice [33] can
support one quasistatic mode at the Brillouin zone corner (M
point), as shown in Figure 1. In addition, this quasistatic mode is
not an isolated solution at zero frequency. When frequency
increases, the index ellipsoids turn into a circle or ellipse from
an isolated point at M, which corresponds to a linear cone
dispersion emerging from the M point. While the emerging
point can be controlled by designing the mesh connectivity,
the shapes of index ellipsoids or the group velocities of linear
bands are determined by the structural details. Once we can
engineer both the centers and the shapes of the low-frequency
index ellipsoids, arbitrary-shaped IFCs can be achieved in
principle. For the case in Figure 1, if the index ellipsoids
emerging from the M point are a circle, then cruciform-
shaped IFCs (dashed line in Figure 1A) would be expected for
the midband frequency of band 1. Also, if the index ellipsoids
emerging from the M point are an ellipse, bowtie-shaped IFCs
(dashed line in Figure 1B) would be expected. Generally
speaking, multiple zero-frequency modes would appear at
multiple k-points when considering more sets of interlaced
wire meshes. By engineering the shape of each ellipse via the
equivalent inductances and capacitances between multiple
meshes, arbitrary-shaped IFCs can, in principle, be realized in
connection-type MMs.

To analyze the low-frequency index ellipsoids, we establish an
equivalent circuit model which could serve as a guideline in
designing connection-type MMs. Here, we consider a 2D double
mesh arranged in a square lattice. Centered in its unit cell is a
metallic block (height d and width w), whose top (bottom) end is
connected to the adjacent unit cell via the metallic bar in the û1
(û2) direction (Figure 2A). When the unit cell is repeated in x
and y directions (3 × 3 supercell in Figure 2B), it is actually
composed of two disconnected meshes (colored in blue and red)

FIGURE 1 | Topological engineering of IFCs utilizing the degree of freedom of index ellipsoids at a nonzero k-point. While the centers of index ellipsoids are
determined by the global connectivity of the metallic mesh, the shapes of index ellipsoids can be designed via the structural details of the mesh. (A) IFCs of the
metamaterial with an isotropic index circle at the Brillouin zone corner. As the frequency increases, the four circles grow and shape into a cruciform. (B) IFCs of the MM
with an anisotropic index ellipse at the Brillouin zone corner. As the frequency increases, the four ellipses grow and shape into a bowtie.
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arranged in a checkerboard manner. Since all the metallic
components in this study are assumed to be a perfect electric
conductor (PEC), blue and red colors just highlight the two sets of
meshes with independent quasistatic potentials. According to the
quasistatic potential analysis in [33], these 2D double-mesh MMs
have one quasistatic mode lying at zone corner M.

We construct a circuit model for this structure to describe its
Bloch modes at relatively low (but not zero) frequency. Note that
the double-mesh MMs are a slab with finite thickness in the z-
direction embedded in air background, and we only consider the
EMmodes with Bloch k near theM point. Since Bloch k lies below
the light cone, the EM mode is guided in the slab and its leakage
into air can be neglected. The EM field of Bloch mode would
induce alternating currents on the metallic wires and charge
accumulation. In Figure 2A, the total current passing through the
top (bottom) wire along the û1 (û2) direction is assumed to be Iû1
(Iû2). Taking into consideration the Bloch boundary condition,
the currents at the unit cell corners should be Iû1e

i
2 (kx+ky)a and

Iû1e
− i
2 (kx+ky)a (Iû2e

i
2 (kx−ky)a and Iû2e

i
2 (−kx+ky)a) along the û1 (û2)

direction. Due to these alternating currents, a time-varying
charge Q should accumulate on the metallic block, which
satisfies the following equation:

iωQ � Iû1e
i
2 kx+ky( )a − Iû1e

− i
2 kx+ky( )a + Iû2e

i
2 kx−ky( )a

− Iû2e
i
2 −kx+ky( )a. (1)

Since we are dealing with the low-frequency Bloch modes at
the k-point not far away fromM, the charge on each block should
be almost plus or minus alternatively in the square array. Also, as
the twomeshes serve as two conductors of a capacitor at quasistatic
limit, the charge on one block should be proportional to the local
potential difference between the twomeshes and written as follows:

Q � CΔφ, (2)
where Δφ is the local potential difference between a metallic block
and its nearest four neighboring blocks. On the other hand, the
alternating currents flowing on the wires would induce
alternating magnetic fields, which are here specified by vector
potential field �A( �r). They satisfy the following relation:

Aû1

Aû2
[ ] � Lû1

Lû2
[ ] Iû1

Iû2
[ ], (3)

whereAûn (n = 1, 2) is a line integral of the vector potential on the
path between two neighboring blocks (gray solid line in
Figure 3B). The inductance matrix is a 2 × 2 matrix whose
off-diagonal terms vanish due to the mirror symmetry of the
structure. As we are considering the Bloch modes near the M
point, Iû1 in Eq. (3) represents a series of currents (Figure 3A),
rather than a single line current, in an infinite square lattice.
Meanwhile, Aû1 represents the vector potential field (Figure 3B)
induced by these collectively oscillating currents. Thus, the
inductance Lû1 is actually the ratio between the current array
and its induced vector potentials, rather than the self-inductance
or mutual inductance of a single wire.

For a perfect conductor, the microscopic electric field inside
should vanish, and we have the following equation:

iωAû1 � Δφei kx+ky( )a − Δφ,
iωAû2 � Δφei −kx+ky( )a − Δφ.

, (4)

where the local potential difference Δφ satisfies Bloch theorem,
and the voltage drop between two adjacent unit cells can be
evaluated by the difference between the local potential differences
of the two unit cells.

FIGURE 2 | 2D double-mesh MM. (A) Unit cell (lattice constant a = 1 cm). The metallic block (width w and height d) centered at the unit cell is connected to the
adjacent blocks by two metallic wires (width wûn

and n = 1, 2) in û1 and û2 directions. The alternating currents on the wires crossing through the cell boundaries would
lead to a time-varying charge Q accumulated on the block. (B) 3 × 3 supercell of the 2D double-mesh MM. It shows that the MM is composed of two disconnected
metallic meshes (blue and red) with independent potentials. The potential difference for the central unit cell is assumed to be Δφ, and then, the potential differences
elsewhere can be obtained using Bloch theorem. (C) Equivalent circuit model of the 2D double mesh.
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Combining Eqs. 1–4, we obtain the following generalized
eigenvalue equation:

e
i
2 kx+ky( )a − e−

i
2 kx+ky( )a e

i
2 kx−ky( )a − e

i
2 −kx+ky( )a −iωC

−iωLû1 ei kx+ky( )a − 1

−iωLû2 ei −kx+ky( )a − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Iû1
Iû2
Δφ

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � 0
0
0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (5)

The equation has a nonzero eigenvector only when the
determinant in Eq. 5 vanishes; then, the low-frequency
dispersion can be derived as follows:

ω2 � 4C−1 L−1
û1
sin2

δkx + δky( )a
2

+ L−1
û2
sin2

δkx − δky( )a
2

⎛⎝ ⎞⎠. (6)

The band dispersion is controlled by two equivalent
inductances and one equivalent capacitance mentioned above,
which can be calculated in magnetostatic and electrostatic limits.
Also, this model applies well for low frequencies, as long as the
Bloch modes near the quasistatic mode (at the M point in this
case) are considered (δkx and δky are sufficiently small compared
to the reciprocal vector). Although the equivalent circuit model
would deteriorate as the frequency increases, it still gives a
qualitative prediction on the IFCs at midband frequency and
can serve as a guideline for MM design.

From Eq. 6, the group velocities in û1 and û2 directions are
written as

vg,û1 � a
�������
2C−1L−1

û1

√
,

vg,û2 � a
�������
2C−1L−1

û2

√
.

(7)

and can then be controlled by the equivalent capacitance and
two equivalent inductances. Since the group velocities depend

on the equivalent capacitance and inductances, the shape of
the index ellipsoid can be controlled by adjusting the structural
details of meshes, which determine the equivalent circuit
parameters.

To investigate the dependence of group velocities on the
structural parameters, we numerically calculate the equivalent
inductances and capacitances of a series of double-mesh MMs.
First, we alter the height of the metallic block centered at the
unit cell while keeping other parameters unaltered (width wp =
0.4a and wû1 � wû2 � 0.05a). Results from electrostatic and
magnetostatic simulations are shown in Figure 4A. It is
found that the change of block height would mostly alter
the equivalent capacitance C between the two meshes,
rather than inductances Lû1 and Lû2. The reason is that the
block height would increase the surface area of the meshes and,
thus, the equivalent capacitance rises. On the other hand, the
equivalent inductances are related to the width of the
horizontal metallic wires and the distance between them
[29]. The two inductances almost remain unchanged, as in
Figure 4A. Hence, the group velocities at quasistatic limit
along û1 and û2 directions should decrease as the block height
changes. Figure 4B shows the results obtained from calculated
band structures and the ones from equivalent parameters,
which agreed well with each other.

In another case, we increase the û1 wire width while keeping
the other structural parameters unchanged (height d = 0.8a,
width wp = 0.4a, and wû2 � 0.05a). The results are plotted in
Figures 4C,D. In this case, the symmetry of the structure is
reduced from S4 to C2, resulting in anisotropic inductances in û1
and û2 directions. The inductance Lû1 (purple open circle in
Figure 4C) decreases, while Lû2 (blue solid circle in Figure 4C)
remains almost unchanged. In the meantime, the equivalent
capacitance slightly increases due to the surface area of the û1
wire. To sum up, the group velocity vg,û1 becomes faster as wû2
increases while vg,û2 becomes somewhat slower, see the symbols

FIGURE 3 | Periodic distributions of (A) currents and (B) the current-induced vector potentials on the double-mesh MM. Since the quasistatic mode is located at
Brillouin zone cornerM, the electric currents on the twomeshes are out of phase (blue and red) and so do the vector potentials they induce. The inductance Lû1

is defined
as the ratio between this vector potential distribution and the current distribution.
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(model) and lines (simulation) in Figure 4D. Here, the index
ellipsoids are oriented in û1 and û2 directions. In principle, the
index ellipsoids can be oriented in other directions by
properly designing the widths of four horizontal wires in
the unit cell.

To further see the applicability of our model, Figures 5A,B
plot the numerically simulated band structure and index
ellipsoids for isotropic double-mesh MMs (height d = 0.8a,
width wp = 0.4a, and wû1 � wû2 � 0.05a) while Figure 5C
gives the index ellipsoids predicted by our model. They agree
well with each other and validate our theory. In both results, the
index ellipsoids gradually evolve from a circle to a squircle shape
as the frequency increases, due to the two sinusoidal terms
in Eq. 6.

To see the influence for different equivalent inductances in
û1 and û2 directions, we increase the bar width of the metallic
wire in the û1 direction in order to weaken its inductance Lû1.
Meanwhile, all the other parameters remain unchanged
(height d = 0.8a, width wp = 0.4a, wû1 � 0.4a, and

wû2 � 0.05a) (inset of Figure 5E). The group velocity in the
û1 direction of the first band becomes faster than that in the û2
direction, leading to elliptical index ellipsoids simulated in
Figure 5F. Also, as the frequency increases, the shape of index
ellipsoids evolves gradually from an ellipse to a rounded
rhombus. This is well predicted by our circuit model
(Figure 5G).

According to our circuit model, we can achieve isotropic or
anisotropic shape of index ellipsoids at quasistatic limit by
adjusting the equivalent inductances in û1 and û2 directions.
Then, the special-shaped IFCs can be achieved for midband
frequencies of band 1, as proposed in Figure 1. For isotropic
wire MM slabs in Figure 2A with appropriate structural
parameters (height d = 0.42a, width wp = 0.4a, and
wû1 � wû2 � 0.2a), an index ellipsoid emerges from the M
point due to the isotropic equivalent inductances. For
midband frequencies (f = 0.2 (c/a) for example), the IFCs
become cruciform shaped (Figure 6A). In another case, the
index ellipsoid at M can be anisotropic when two equivalent

FIGURE 4 | Tuning the group velocities of index ellipsoids by the inductances Lûn
and capacitance C of the double-mesh MM. (A) Parameter dependencies of the

inductances and capacitance for the isotropic MM. Here, we change the metallic block’s height while keeping the other parameters unchanged (width wp = 0.4a and
wû1

� wû2
� 0.05a). (B) Group velocities of the index circle at quasistatic limit as a function of d. Solid lines are given by the equivalent circuit model, while symbols are

given by the simulated band structure. (C,D) The same as panels A and B but for the anisotropic MM, where we change one of the bar widthswû1
instead of height

d (height d = 0.8a, width wp = 0.4a, and wû2
� 0.05a).
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inductance parameters are unequal. Considering the MM slabs
with structural parameters (height d = 0.36a, width wp = 0.4a,
wû1 � 0.3a, and wû2 � 0.05a), we have bowtie-shaped IFCs at

around f = 0.2 (c/a) (Figure 6B). In addition, the frequency range
of special-shaped IFCs can be adjusted by the mutual capacitance
between double meshes.

FIGURE 5 | Shaping the index ellipsoids by introducing anisotropic inductances. (A) Simulated band dispersion and (B) corresponding IFCs for the isotropic MM
shown in Figure 2A. In this case, the two metallic wires have the same bar width (height d = 0.8a, width wp = 0.4a, and wû1

� wû2
� 0.05a), leading to the isotropic

inductances along û1 and û2 directions. (C) IFCs given by the equivalent circuit model. When the frequency increases, the index circle gradually evolves into a squircle
shape, which agrees well with the simulated result in panel B. (D) First and second Brillouin zones. (E) Simulated band dispersion and (F) corresponding IFCs for an
anisotropic metamaterial. In this case, the metallic wire in the û1 direction has a thicker bar width than the one in the û2 direction (height d = 0.8a, width wp = 0.4a,
wû1

� 0.4a, and wû2
� 0.05a), leading to anisotropic inductances and the index ellipse in panel F. (G) IFCs given by the equivalent circuit model.

FIGURE 6 | MMs with (A) cruciform-shaped or (B) bowtie-shaped IFCs (simulation). Structural parameters: in (A), height d = 0.42a, width wp = 0.4a, and
wû1

� wû2
� 0.2a; in (B), height d = 0.36a, width wp = 0.4a, wû1

� 0.3a, and wû2
� 0.05a.
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3 CONCLUSION

In conclusion, we propose an equivalent circuit model for
connection-type MMs to analyze its low-frequency dispersion
away from quasistatic limit, taking into account the mesh
connectivity. The model implies that the low-frequency IFCs
can be engineered via the equivalent inductances and capacitance
of the metallic meshes. For instance, we adjust the metallic block
height and the wire width according to the model and
demonstrate the feasibility of shaping the low-frequency IFCs.
Coupled with the degree of freedom of the quasistatic mode at an
arbitrary k-point, one can, in principle, realize the arbitrary
topology of IFCs and manipulate the EM propagation
properties using an artificial medium.
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