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Abstract

An optical Fano resonance, which is caused by birefringence control rather than frequency selec-

tion, is discovered. Such birefringence-induced Fano resonance comes with fast-switching radiation.

The resonance condition εt < 1/εr is revealed and a tiny perturbation in birefringence is found to

result in a giant switch in the principal light pole induced near surface plasmon resonance. The

loss and size effects upon the Fano resonance have been studied Fano resonance is still pronounced,

even if the loss and size of the object increase. The evolutions of the radiation patterns and energy

singularities illustrate clearly the sensitive dependence of Fano resonance upon the birefringence.
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Light scattering by a small particle is one of the most fundamental problems in elec-

trodynamics and potential applications in information processing, nanotechnologies and en-

gineering. The essence of extraordinary light scattering is the localized surface plasmon

which is oscillating with the frequency of the incident wave [1]. For particles with the size

much smaller than the incident wavelength, Rayleigh approximation can be adopted [? ].

Nonetheless, recent studies show that for small particle with weak dissipation near plasmon

resonance frequencies, anomalous light scattering takes place with unexpected features, e.g.,

sharp giant optical resonances with inverse hierarchy, unusual frequency and particle size

dependence, and complicated near-field energy circulation [3–5]. Recently, a lot of studies

were related to the resonances in plasmonic nanostructures [6–9], coherent nanocavities [10],

and metallic films [11, 12]. However, they were discussed for isotropic materials or elements,

and also Fano resonance was observed versus the fine tuning of frequency.

In this letter, we provide a new paradigm to realize Fano resonance via the birefrin-

gence (anisotropy) of a single particle, instead of controlling frequency. This novel resonant

mechanism may be a new paradigm for sensitive optical identification of molecular groups,

calculation of heating, radiation pressure and trapping. The anisotropy is found to be able

to tailor the surface plasmon resonance and induce additional plasmonic resonances. It is

thus revealed that birefringence-induced Fano resonance occurs to the anisotropic rod and

its radiation pattern is affected by the subtle perturbation of the rod’s birefringence. We

also look into the near field where Poynting bifurcation and vortex analysis are investigated

against the birefringence-induced Fano resonant cases. Note that the anisotropic param-

eters are homogeneous, i.e., position-independent, which is in contrast to the parameters

of a cloak [13]. Here we would like to consider the homogeneous rod with constant radial

anisotropy in both
↔

ε and
↔

µ, i.e., they are diagonal in cylindrical coordinates with values

εr(µr) in the radial (
⇀

r) direction and εt(µt) in the other two directions (
⇀

θ and
⇀

z). Actually,

such birefringence can be realized by graphitic multishells [14] or stratified mediums [15], and

in practice, it has been found in phospholipid vesicle systems [16, 17] and in cell membranes

containing mobile charges [18, 19].

The magnetic field only exists in the z -direction. The constitutive tensors of the relative

permittivity and permeability are expressed as
↔

ε = εr
⇀

r
⇀

r + εt
⇀

θ
⇀

θ + εt
⇀

z
⇀

z and
↔

µ = µr
⇀

r
⇀

r +

µt

⇀

θ
⇀

θ + µt
⇀

z
⇀

z respectively in cylindrical coordinates, where εr(µr) and εt(µt) stand for the

permittivity (permeability) elements corresponding to the electric- and magnetic- field vector
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normal to and tangential to the local optical axis, respectively. The time dependence e−iωt

is assumed. We rely on MathematicaTM to produce all the results throughout.

For the TE mode, we have the wave equation

1

r

[

∂

∂r

(

r

εt

∂Hz

∂r

)]

+
1

r2
∂

∂θ

(

1

εr

∂Hz

∂θ

)

+ k2
0µtHz = 0. (1)

The local field solutions in the inner and outer region of the wire can be described as

H in
z =

∞
∑

m=−∞
imAmJm′(kr)eimθ and Hout

z =
∞
∑

m=−∞
im[Jm(k0r) +BmH

(1)
m (k0r)]e

imθ, respec-

tively, where k = k0
√
εtµt and k0 = ω

√
ε0µ0. Note that the Bessel function index m’,

i.e., m′2 = m2εt/εr is no longer a conventional integer, which is different from the uniaxial

material considered in [2]. Under TE (or TM) incidence, the uniaxial material in [2] is

actually isotropic, while our birefringent material is defined in cylindrical coordinate and

is not isotropic under TE (or TM) incidence [14–19]. To solve the scattering problem, the

scattering coefficient Bm now becomes the most important issue:

Bm = −
√
εtµtJm′(

√
εtµtq)J

′

m(q)− µtJm(q)J
′

m′(
√
εtµtq)

√
εtµtJm′(

√
εtµtq)H

(1)′
m (q)− µtJ

′

m′(
√
εtµtq)H

(1)
m (q)

(2)

where the prime denotes the derivative with respect to the argument and the size parameter

is q = k0a. It is evident that Bm reduces to the isotropic case by replacing εr(εt) and µr(µt)

with ε and µ, respectively [2].

Note that the “effective” permittivity and permeability can be isotropic even for a radially

birefringent object [20]. In search of the effective response for such a birefringent cylinder,

one assumes that the rod with radial anisotropy is embedded in an effective medium with

isotropic effective permittivity εeff and permeability µeff and when no scattering arises,

the search stops, i.e., “effective” parameters are found. In this sense, we replace ε0 and µ0

by ε0εeff and µ0µeff , and they can be determined. By considering the equivalence to the

isotropic case for q → 0, the surface resonant condition tends to be εeff =
√
εr
√
εt = −1,

i.e., εt = 1/εr for negative εr.

To explain the optical resonances numerically, let us present the amplitude

Bm = − ℜm

ℜm + iℑm

(3)

by separating the real and imaginary parts, then we have

ℜm =
√
εtµtJm′(

√
εtµtq)J

′
m(q)− µtJm(q)J

′
m′(

√
εtµtq) (4)

3



FIG. 1: (Color online) Analysis of resonant conditions and dominant modes versus size parameter

q for monopole resonance m=0 (a); dipole resonance m=1 (b), and quadrupole resonance m=2

(c). (a-c) show how the new additional resonances will be induced by the tiny perturbation in

birefringence for high-order resonances (e.g., dipole, quadrupole, etc). Here we keep εr = −1, and

δ = εt − εr which serves the measure of birefringence. Hence εt = −1 (i.e., δ = 0) corresponds to

the isotropic situation.

ℑm =
√
εtµtJm′(

√
εtµtq)Y

′
m(q)− µtJ

′
m′(

√
εtµtq)Ym(q) (5)

where Ym is the Neumann function. The exact optical resonance corresponds to the situation

when ℑm = 0, which leads to |Bm| = 1. For simplicity, the material is assumed to be non-

magnetic, i.e., µt = 1.

In Fig. 1(a), it indicates that there is no surface resonance at small q and the maximum

magnitude of B0 always occurs in the vicinity of q ≈ 2.8 no matter how the transversal

permittivity εt deviates from the radial permittivity εr. Nevertheless, new resonances will

be excited in higher-order modes (e.g., dipolar, quadrupolar, etc) as shown in Figs. 1(b,c)

at small size parameter q. In Fig. 1(c), one can see the isotropic case (the red line), i.e.,

εt = −1 = εr, does not have the additional optical surface resonance at very small q. Under

the resonant condition εt < εr, Figs. 1(b,c) reveal that a slight deviation from the isotropic

case (εt = −1), i.e., the perturbation of birefringence δ 6= 0, will give rise to a new surface

resonance for small particles. When εt is very closer to −1, the additional optical resonance

for higher-order modes will be more isolated from the volume resonance (which is still found

to be insensitive as the monopole). When εt is more deviated from −1, the optical resonance
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FIG. 2: (Color online) Polar diagrams for light intensity versus observation angle θ associated

with Fano resonance and fast-switching radiation pattern. We assume q = 0.1 and εr = −1. (a)

δ = −0.0065; (b) δ = −0.0067835; (c) δ = −0.0071. The switching radiation pattern versus the

change of birefringence has been demonstrated (Media 1).

will be merging with the volume resonance. Obviously, the case of εt = 0.8 in Fig. 1 does not

satisfy the surface resonant condition, so it only possesses a volume resonance. Considering

the resonance trajectory, it is not difficult to propose dεt/dq. Negative (positive) value

denotes surface (volume) resonance.

Strong variations of the total scattered intensity are caused by a tiny change in birefrin-

gence. As is shown in Fig. 2, when the parameters εr and εt fit the condition of the surface

plasmon resonance, an equilibrium state with a symmetrical pattern is yielded, and in the

vicinity of the equilibrium, the radiation pattern flips fast just because of a tiny perturbation

of the birefringence ( here we change εt while keeping εr = −1). With the increase in εt,

more and more light is directed into the forward direction “before” it passes the equilibrium

state; but after right passing that symmetrical state, light starts to be directed back into

the backward direction, and such switch is quite sensitive to the variation of birefringence.

To reveal the near-field distribution when Fano resonance occurs, we investigate Poynting

vector S bifurcation and distribution of singularity points which is sensitively altered by

the birefringence of the particle. In Fig. 3, we investigate 4 typical situations: 1) no

birefringence is present (Fig. 3(a)); 2) birefringent case at equilibrium resonant state (in

Fig. 3(c)); 3) birefringent cases “before” and “after” the equilibrium resonant state (in

Figs. 3(b,d) respectively). Based on our approach and analysis, the Poynting vector lines

and their bifurcations demonstrate various types of singular points: (1) ordinary singularities

defined as the zeroes of the vector S; (2) so-called boundary singular points defined as

Sr(r = a, ϕ) = 0. It shows that the ordinary singularities (red dots in Media 2) outside

the particle will be shifted further away (out of the plot area) but those inside the particle
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FIG. 3: (Color online) Poynting vector |S| distribution, lines of Poynting vector S, and singular

points for (a) isotropic cylinder δ = 0 and anisotropic ones (b) δ = −0.0065; (c) δ = −0.0067835;

(d) δ = −0.0071. Parameters: q = 0.1 and εr = −1. In the figures two types of singularities are

shown: usual singularities (red points) and boundary singularities (black points at the cylinder

boundary). The sensitive dependence of singularities along the change of anisotropy can be seen

(Media 2).

will be moving towards the center and gradually merging into one common singularity in

the center eventually.

The number of boundary singularities keeps unaffected when the object becomes

anisotropic, except at the equilibrium resonant state. However, the positions of those bound-

ary singularities will be sensitively dependent on the degree of anisotropy. The points 1b–4b

appear for all cases, where b denotes boundary singular points. Points 5b and 6b are more

interesting. If no anisotropy exists as in Fig. 3(a), 5b and 6b are located on the crossing

points of the object’s boundary and the vertical line passing through the center (0,0). When

radial anisotropy is introduced as in Figs. 3(b,d), points 5b and 6b will be shifted away from

6



-1.10 -1.08 -1.06 -1.04 -1.02 -1.00
0

2

4

6

8

10

12 (a)

-1.008 -1.006 -1.004
0

4

8

12

16

20

24 (b)

-1.002508 -1.002506 -1.002504
0

5

10

15

20
(c)

S
ca

tte
rin

g 
lig

ht
 In

te
ns

ity
, a

.u
.

Dielectric permittivity t

-1.0013348 -1.0013347 -1.0013346

3.30

3.35

3.40

3.45

3.50

(d)

 

 FS
 RBS

FIG. 4: (Color online) The far-field scattering intensity (a.u.) versus transversal permittivity εt

when q = 0.1 and εr = −1. (a) Forward scattering (FS) and radar backscattering (RBS) in the

region of −1.1 < εt < −1, i.e., −0.1 < δ < 0. (b) Asymmetric resonance corresponding to fast-

switching radiation pattern near εt ≈ −1.0068 shown in Fig. 3. (c) Symmetric resonance near

εt ≈ −1.002506 which leads to almost symmetrical radiation pattern (see the evolution in Media

3). (d) Symmetric resonance near εt ≈ −1.0013347 which is less dominant.

the centered vertical line. Of particular interest is the situation of Fig. 3(c), where a sym-

metrical radiation pattern holds in both near and far regions. In such an equilibrium state,

points 1b-4b are located symmetrically on the boundary while Points 5b and 6b disappear.

It is found that the change of singular points is not continuous in birefringent situations,

and points 5b and 6b are either shifted away from the center line or not present (see the

black dots in Media 2).

Figure 3(a) also reveals that there are eight normal singularities in the vicinity of the

isotropic cylinder (more points exist afar). The points 1–4 (5–8) are situated outside (inside)

the cylinder. Birefringent cylinder offers the fundamental distinction: a saddle point arises

exactly at the center (0,0). The numbers of singular points become less near a birefringent

cylinder, but some points exist outside the ranges of the figures. The singularity investigation

gives us more physical insights of how energy is directed and localized, which may be helpful

in exploring calculation of heating, radiation pressure and trapping furthermore.

To have a better understanding of the birefringence-induced Fano resonance, we inves-

tigate birefringence dependence of the far-field scattering intensity, particularly for forward

scattering (FS) and radar backscattering (RBS). In Fig. 4(a), it is clear that there are very
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sensitive resonances in the narrow region of −1.01 < εt < −1. Specifically, we found three

resonances as shown in Fig. 4(b), 4(c) and 4(d), respectively. The fast-switching radiation

(i.e., FS and RBS flip over), which attributes to similar Fano resonance in Figs. 2 and 3,

is corresponding to the first resonance reported in Fig. 4(b). It can be found in Media 1

that such resonance is quite asymmetric. On the contrary, Media 3 clearly demonstrates

that the resonance in Fig. 4(c) is quite symmetric along the change of birefringence near

delta ≈ −0.002506. The additional resonance in Fig. 4(d) appears to be also asymmetric

but less dominant compared to the other resonances, which is not discussed herein.

Does it mean that the last sentence above is not true after your recent checks (your

previous comments were as below)? If it is still true, i think the current Fig.5 is not

100% targeted to the reviewer’s concern. Fig.5 is great, but presents too much information

(without matching discussion) and didn’t selectively address reviewer’s question.

We only need to show two cases (e.g., α = 0.01 and α = 0.1) or just only one case

α = 0.01, if we can exactly illustrate the process of first resonance being broadened and one

high-order resonance being narrower, and we can tune different ǫr to let it pronounce.

The birefringence-induced Fano resonance with extreme sensitivity is presented and can

be used for different applications, e.g., data storage and optical recording. For more detailed

information, we investigate the both near-field and far field phenomena by using the full-

wave approach. The localized field distributions in the vicinity of the resonant condition

agrees with the directivity switch in far-field due to the Fano resonance and high-order

modes’ interference. Such Fano resonance is found to be existing even when the loss is not

negligible or the particle’s size is large. In conclusion, Fano resonances are generated with

the condition εt < 1/εr, which leads to a giant switch in the principal light pole induced

near surface plasmon resonance with a tiny perturbation in birefringence.

Media 1, 2, and 3 are movies, supplied as supplementary files. This work was supported

by the National University of Singapore under Grant No. R-263-000-574-133.
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