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Abstract- We will examine the issue of image formation of an 

object placed in front of a negative index slab, and see under 
what circumstances should we see an image and under what 
circumstances would the object become invisible and thus no 
image is formed.   

I.  INTRODUCTION 

Pendry [1] showed that a slab with ε = μ = -1 (lossless 
Veselago slab [2]) can focus all the Fourier components of 
light including the evanescent components which makes the 
Veselago slab [2] a perfect lens. The concept of 
complementary media [3] can be used to understand the 
image formation. In particular, it states a slab with (ε, μ)  and a 
slab of equal thickness constructed to be an inverted mirror 
image and (ε, μ) reversed in sign is equivalent to an optical 
void. This immediately explains why the Veselago lens is a 
perfect lens. However, Milton et. al. [4, 5] showed that a finite 
loss of the Veselago lens will induce localized resonance 
which will influence the image formation for objects that lie 
within the resonance region. As the loss approaches zero, a 
point object located less than a specific distance from the lens 
cannot be excited by external field and thus the slab cannot 
form an image. 

In this talk, we will examine the image formation of an 
object located in front of a metamaterial slab with arbitrary 
material composition, and to see under what circumstances 
would the slab behave as a lens or as a cloak.  

 
II. THE FORMALISM  

We consider a small object placed at the distance zd in front 
of a metamaterials slab with material parameters (ε, μ) and 
thickness d. The object is described a dynamic dipole 
polarizability α = i (3/2k0

3) a1, where k0 = ω/c with c as the 
speed of light, and a1 is the electric term of the Mie’s 
coefficients. We assume that the external light source is a 
dipole source with a polarization along the y direction 
(parallel to the slab), and both of the active dipole and the 
passive object are placed at z axis, the nonzero component of 
the induced dipole moment is oriented in y direction so that  
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where psrc is the external dipole source. 
,

tot
yy dipW  is the 

yy-element of the dyadic Green’s function at the passive 
dipole which takes into account the effect of the slab. α* is the 
effective polarizability with the form of,  
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Here ref
yyW  is the yy-element of the reflection part of the 

dyadic Green's function, with the form of, 
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where RTE and RTM are the reflection coefficients of the slab 
[6]. Also, by using Eq. (1), the electric field at an arbitrary 
point R can be written as, 
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where 
,

tot
yyW R

 represents the yy-element of the total Green’s 

function radiated at R by the external source, and 
,

tran
yyW R

 

represents the yy-element of the Green’s function radiated at 
R by the dipole object [6].  

 
III. EXCITATION OF THE DIPOLE FOR ISOTROPIC NEGATIVE 

INDEX SLAB 

Eq. (2) can be interpreted as the single particle dipole 
polarizability that includes the reflection response of the slab. 
It is as if the object has the effective polarizability. When α* 
→ α, we can regard as the object being completely excited, 
and the slab behaviors potentially as a lens because the dipole 
becomes a source of energy and if the slab has negative index, 
it can focus the energy into an image behind the lens. 
However, if α* → 0, the slab serves as a cloak because the 
induced dipole moment vanishes, and the total field behind 
the slab is the same as if the object is not there. The 
functionality of the slab as a lens or as a cloak can be seen by 
examining α*.  

We shall now examine the asymptotic behaviors of ref
yyW . 

When ε and μ are not -1,  we can show that 
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where κ0, lim
TER , and 

lim
TMR  are constants related to the material 

parameters of the slab, and the wavevector k0. Therefore, as zd 
→ 0, ref

yyW  diverges as exp (-2κ0zd) / zd
3. It indicates that α* 

goes to zero smoothly and the excitation will be suppressed as 
the dipole move closer and closer to the slab. We emphasize 
that the suppression effect occurs for any material parameter 
value (except for when ε = μ = 1) as long as the object is 
sufficiently close to the slab. Because the big k// component 



responses of the slab can suppress the dipole excitation (α* → 
0) completely as long as the object moves sufficiently close to 
the slab.  

The case of ε, μ → -1 is special. Fig. 1 shows the numerical 
simulation results of the cloaking and imaging properties of 
the lossy Veselago slab when the dipole object is placed at 
different distances from the slab. 

 

 
Fig. 1. (a) Cloaking and (b) imaging effect of the lossy Veselago slab 

( 71 10 i      ) when the object locates at zd = d/5 and 4d/5. 

 
From Fig. 1, one can see that the Veselago slab can behave 

as a cloak (left) or as a lens (right), depending on the location 
of the small object. By carefully examining the asymptotic 
behavior of ref

yyW  in the limit of ε = μ = -1+iδ, δ → 0, it can be 

shown that the reflection due to evanescent waves can be 
approximated as /ref

yyW C  , where C is a constant, and γ 

= 1 – 2zd /d. It is clearly seen that 
0

lim ref
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
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and 
0

lim 0ref
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
  if zd > d/2. It indicates that the Veselago 

slab with ε = μ = -1+iδ have cloaking effect with a critical 
distance d/2 in the zero absorption limit. This is the finite 
frequency analog of the anomalous resonace effect first noted 
by Milton et al. for two-dimensional line dipole 
configurations in the quasistatic limit [5]. 

When 1 , 1i       , we find that the cloaking 

distance has a transition from the quasi-static limit to finite 
frequency region. In the quasi-static limit, there is a finite 
“suppression zone” of d/2 in the limit 0  . While in the 
high frequency regime, α* smoothly approaches zero with an 
asymptotic form of 5

dz , and there is no critical distance. In 

addition, for 1 , 1i       , α* smoothly approaches 

zero with an asymptotic form of 3
dz  so that the suppression is 

not as strong as in the case with 1 , 1i       .  

We also find that suppression zones can also occur in other 
negative index slabs if we allow for anisotropy.  In general, a 
“folded geometry” slab [7,8] (within the framework of 
transformation optics) with ε = μ = diag (-β, -β, -1/β), β > 0, 
the reflection coefficient R for evanescent components is the 
same as that of a Veselago lens of βd. Hence, the cloaking 
effect also occurs in this kind of anisotropic negative 
refractive index slab with a critical distance of βd/2. Fig. 2 
shows the numerical demonstrations of the cloaking effect 
calculated by the COMSOL package. We see that the object 
can be cloaked [Fig. 2(a)] or imaged [Fig. 2(b)] by the slab 
depending on whether is it within or outside zd = βd/2. 

 

 

Fig. 2. The “dipole” object (black dot) is (a) cloaked  
or (b) imaged by an anisotropic “folded geometry” slab.  

 
 

IV. SUMMARY 
In summary, we have investigated the image formation of a 

dipole object in front of a metamaterial slab. The excitation of 
a dipole object can be suppressed if it is placed sufficiently 
close to the slab with arbitrary values of (ε, μ). The 
suppression is strongest in “folded geometry” slabs which 
have a finite suppression zone of βd/2 in the limit of small 
absorption.  
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