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Refractive index is a fundamental electromagnetic (EM) parameter that can describe photonic 

continuous media (PCM) traditionally as either transparency or opacity. Recently, topological 

theory offers a new set of phases to characterize PCM as either trivial or nontrivial, by using 

topological invariant which are not direct to EM parameters. As all of optical properties in PCM 

should be related to EM parameters, we formulate a topological index based on EM parameters and 

establish its phase map in this work. The map can analytically describe the deterministic condition 

for a topologically nontrivial phase. Our findings indicate that the topology of 2D bi-anisotropic 

PCM is determined by the sign of the topological index. Another EM parameter of pseudo surface 

impedance is also introduced for the opaque regions of PCM, showing that the topological opacity 

has a full range of impedance values ranging from negative to positive, while the trivial case only 

has either negative or positive impedance. The simulation results show that an interface between 

two opacities with differing index signs can support robustly optical propagation of topological edge 

states. As the index only depends on EM parameters, it will pave an insightful way to further 

understand the intrinsic properties of photonic topology.  
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Topology, a concept originating from mathematics, has attracted widespread attention in the physics world, 

from condensed matter to classical waves [1, 2]. Recently, rapid developments in topological photonics 

have created an advanced platform at both microwave and optical frequencies for flexibly controlling 

various types of topological phases, as well as provided a new paradigm for designing on-chip 

nanophotonic devices  [3-23]. These intriguing features in principle are derived from the topological band 

theory, which can theoretically predict nontrivial evolution of band structures and protections of 

topological states in the k space [24]. For photonic systems, a general method to mimic the effective model 

of topological band theory is the exploration of photonic periodic lattice (PPL). As one of the common 

cases, photonic crystals support Bloch waves in its building blocks [17, 25], and some of the eigenmodes 

around high-symmetry k points can be approximately described by the effective Hamiltonian. Based on 

topological band theory, one can use topological invariant to characterize topological phases as either non-

trivial or trivial.  

Photonic continuous media (PCM) are a class of optical homogeneous materials, such as 

metamaterials which are homogenized as effective media. As well known, most of metamaterials or 

artificial PCM can be described by a set of electromagnetic (EM) parameters [26, 27], i.e. permittivity  

and permeability . Based on the sign of  and , such PCM have achieved lots of exotic EM responses 

which are difficult to be realized by natural existence of optical materials, including ultrahigh-index 

permittivity ( >> 1,   ), negative index ( < 0,   ), magnetic mirrors ( > 0,   ) and zero 

refractive index ( 0n =  ). The exploration of topologically non-trivial phases also extends to PCM 

under the consideration of certain material dispersion, which is analogous to the topological bands of PPL. 

In this way, PCM could maintain variety of topological features, even though it is lack of Bloch-wave 

mechanism. For example, one-way waveguide were realized in an interface between a 2D magnetized 

plasma and an ordinary reflector [28, 29], which shows an evidence for the topological edge states in PCM. 
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Later, an efficient method was developed to calculate the topological invariant of dispersive magnetized 

plasma and give a direct characterization of topologically non-trivial phase [30]. It was also found that 3D 

PCM with chiral response could be associated with topological phase and Weyl point [31-33]. The concept 

of direction-dependent refractive index was developed to analyze the topological features of zero-

refractive-index materials [34]. The retrieval of topologically non-trivial phases in these works is mostly 

derived from band theory. However, it is not straightforward for PCM, as all of optical responses should 

be associated with their EM parameters. This issue inspires us to seek a new approach to bridge the gap 

between topological invariant and EM parameters. 

In this work, as the consequences that the nonzero topological invariant is derived from the 

singularity of Berry curvature, we employ EM parameters to define a topological index related to the 

condition of the singularity. Based on refractive index and topological index, a topological phase map (see 

Fig. 1) is constructed to demonstrate the topologically nontrivial phase in 2D PCM, which is determined 

by the sign of topological index. An example of PCM with Lorentz-like dispersion is given to show that 

the evolution of topological index is well consistent with band theory. An interface between two opacities 

of different index sign gives rise to gapless edge states against sharp bending. Such bulk-edge 

correspondence is also described by pseudo surface impedance of complete gap. 

At first, we consider a bi-anisotropic PCM with the following constructive relations, 
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are the relative permittivity, relative permeability and bi-anisotropic tensors, respectively. In general, 

optical materials respond differently for electric field and magnetic field due to r r  . In order to 

construct a pair of pseudo spin degenerating, one of the solutions is to retrieve electromagnetic-dual 
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parameter ( ), ,r r p p zdiag    = = . Thus the Maxwell equations can be divided into two non-relativistic 

equations for two sets of decoupled vectors ( )0 0 0 0 0 0x x y

T

y z zE H E H E H      = , 

where the superscript + (–) represents the spin-up (spin-down) eigenstate for in-phase (anti-phase) field 

pattern between Ez and Hz. The detailed derivation can be seen in Appendix A of Supplemental Material. 

Note that all of ‘spin’ in this work represent pseudo spin. 

With a simple deduction, the Maxwell equations can be generalized to be Schrödinger-like formation 

H
c


   =  [see Appendix B of Supplemental Material]. The characteristic matrix H 

 is the effective 

Hamiltonian of PCM, which is similar to the role of Hamiltonian in quantum system. The eigenfields in 

PCM can be simplified as plane-wave form that ( )exp ik r  = , where    is the complex amplitude 

of the spin-polarized states. After solving the eigenvalues of effective Hamiltonian, the bulk dispersion is 

given as, 
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where ( )2 2 /eff z p pn    = −  is the effective refractive index. Eq. (3) is the characteristic equation for 

both spin–up and –down modes, since they degenerate simultaneously in the bulk. Consider the BI PCM 

with Lorentz-like dispersion as the following form, 
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where op, ok = op, oz = 0.8op, are the oscillation frequencies for different components, while A = 

1.5op, B = 0.75op, C = 0.9op represent the resonance strength, respectively. Here all parameters are 

normalized by the in-plane oscillation frequency op. Applying Eq. (4) to Eq. (3), we have analytic 
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solution of the dispersion relation as shown in Fig. 2(a). The pink lines represent the band dispersions of 

two spin-degenerate modes. To subsequent discussion we refer to these four bands as bands 1-4, 

respectively. Separated by these bulk bands, there are three cyan gaps as the following frequency intervals: 

oz op     for gap I, ( )2 2 2 2 24 2oz C B B op A       +   − + + +
  

 for gap II and 

( )2 2 2 2 24 2op A B B op A       +   + + +
  

 for gap III. 

To study the topological properties of those bulk bands and gaps, we should attain the Berry 

information, including the Berry connection A , Berry curvature   and the corresponding spin Chern 

number sC . By using the generalized method (Appendix C of Supplemental Material) and nonlocal 

approximation (Appendix D of Supplemental Material), the Berry connection A  and the Berry curvature

k A  =    in PCM can be calculated analytically. Based on the integration of Berry curvatures over 

entire k space, we have a quantized invariant to define the topology of spin–up and –down channels, 

1

2
x yC dk dk



 =  .      (5) 

The net Chern number always vanishes (i.e. 0C C+ −+ = ) due to time-reversal invariance. The 

topological phase of the overall system can be characterized by another invariant, i.e. spin Chern number 

( ) 2sC C C C+ − += − = . Note that the smooth distribution of Berry curvature satisfies Stokes’ 

theorem: 
1 1
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+ +

=
=  =    [bands 1 and 2 in Fig. 2(b)] and thus the surface integral 

of Berry flux can be replaced by the line integral of Berry gauge field over the k-space boundary ( k =  ). 

The well-defined effective Hamiltonian ensures the Berry connection to be vanish at k =  , so that the 

line integral of equifrequency contour of infinite wavevector attains 
1
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nonzero Cs, the singularity of Berry curvature should be found. In band 3 (4) of Fig. 2(b), we can clearly 
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observe singular peak of spin-up Berry curvature with anticlockwise (clockwise) vortex of Berry 

connection. The singular vortex indicates a source of Berry gauge field in accordance with the fact that Cs 

is -1 (+1). In these two cases, the Strokes’ theorem can be recovered by adding a summation of line 

integrals in the vicinity of singular k points, i.e. 
1 1

2 2 i
s kk R

C A dl A dl
 

+

+ +

=
=  −   , where R+

 is a 

circle in the vicinity of singular 
ik  point. The summation term provides nonzero value of spin Chern 

number and thus leads to a topological phase transition. In other words, to guarantee the existence of 

topological nontrivial phase, it is more significant to explore the singularities of Berry curvature. 

In fact, regardless of band theory, the optical properties of PCM should be related to its EM 

parameters. This issue inspires us to bridge the gap between topological phase and EM parameters. We 

start with a fundamental parameter, i.e. the square of effective refractive index (SERI) 

( )2 2 2 /eff z p pn    = − . Figure 3(a) show the SERI of bi-anisotropic PCM as a function of frequency. The 

transport properties are traditionally determined by the sign of SERI. For 2 0effn   (pink bands), the 

transparent waves propagate in the bulk media freely, while the opaque modes localize in the surface and 

exponentially decay into the bulk when 2 0effn   (cyan gaps). As SERI can’t characterize the topology of 

PCM, we should seek a new index that can describe the relationship between topological phase and EM 

parameters.  

As stated above, the transition of topological phase is related to the singularity of Berry curvature. 

The expression of Berry curvature can be analytically written as 

 ( )( ) ( ) ( )
2

2 2 2 2 2

0 02 2p p p p pW k               = +  + − +  −
    

,   (6) 

where W0 is proportional to the time-averaged energy density that W0 > 0. To observe the distribution of 

Berry curvature and retrieve topologically nontrivial phase, all of the following discussions focus on 
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nonzero BI coefficient. According to Eq. (6), the Berry curvatures go to infinity when the term 2 2

p −  

approaches to zero and thus leads to a transition of topological phase. In other words, we can use such 

index to characterize the topology of PCM. Figure 3(b) plots the topological index 2 2

p  = −  as a 

function of operation frequency. Two special points ( 2 2 0p − = ) are highlighted as blue dots. They 

guarantee the existence of the singularity of Berry curvature which leads to topological transition. Below 

point A, including bands 1-2 and gaps I-II, the material attributes to trivial topology with topological index 

2 2 0p −  . At the intersection between gap II and band 3, the topological index experiences from positive 

to negative value. The change of sign of topological index leads to the singular structure of Berry curvature 

and provides a topological transition from trivial to nontrivial phase. Therefore, the region with negative 

topological index carry topologically nontrivial properties. Similarly, another topological transition can 

be also observed around point B.  

A topological phase map is defined to combine the information of SERI and topological index, as 

shown in Fig. 1. The phase map can be divided into four quadrants, i.e. ordinary transparency, topological 

transparency, topological opacity and ordinary opacity. There are two types of topological transition 

highlighting by red arrows. As SERI ( )2 2 2 /eff z p pn    = −  include the term of topological index 2 2

p − , 

the topological transition points ( 2 2 0p − = ) will inevitably appear at the origin of phase map. In other 

words, the transition of topology will always be accompanied by transparent-opaque transition. Figure 3(c) 

gives the evolution of phase map in bi-anisotropic PCM, as the operation frequency increases continuously. 

The material response and numerals labels are identical to Fig. 2(a). The medium first behaves as ordinary 

transparency (band 1) and then turns to be ordinary opacity (gap I) with a resonance of z  . As the 

increasing of operation frequency, the optical response jump back to the first quadrant (band 2) and passes 

through the horizontal axis without resonance. We should note that all of the above trajectories locate at 
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the topologically trivial semi-space. And then, two types of topological transition are found near the origin 

of coordinate: the first one is from ordinary opacity to topological transparency [i.e. point A in Fig. 3(b)], 

while the second one is between topological opacity and ordinary transparency [i.e. point B in Fig. 3(b)]. 

On the other hand, the surface impedance is related to the existence of interface states. Inspired by 

this method, we introduce the concept of surface impedance into the bi-anisotropic PCM. Figure 4(a) 

shows the definition of pseudo surface impedance on the downward side of the boundary as the ratio of 

the x-direction spin wave to the z-direction spin wave, yielding ( ) ( )0 0s x zZ y y   −  −= = = , where y = 0 

defines the boundary. Based on Eq. (12) of Supplemental Material, we can analytically obtain the pseudo 

surface impedance in theory. Here, we only focus on the pseudo surface impedances in the opaque regions, 

whose real part vanish in the complete gap. The imaginary part of pseudo surface impedances for spin-up 

states are presented in Fig. 4(b). These three different PCMs have the same EM parameters to Fig. 2 except 

for normalized in-plane oscillation frequency. Medium 1 preform as a topologically trivial opacity in the 

gap region with negative impedance, while medium 2 possesses positive impedance in the topologically 

trivial opaque region. The topologically non-trivial opacity (medium 3) experiences full-range impedance 

from positive infinity to negative infinity. To guarantee the existence of an interface state, one should 

retrieve matched impedances on each side of interface, i.e. 1 2 0s sZ Z+ = . For example, a traditional method 

is to form an interface between positive-impedance opacity and negative-impedance opacity. However, 

some certain frequencies cannot verify the impedance-matched condition, such that there is lack of surface 

waves. The topologically nontrivial gap, with full-range impedance from positive infinity to negative 

infinity, gives a robust mechanism to match another impedance of trivial gap. This is another 

demonstration why the gapless dispersion of surface waves can be formed at the interface between 

nontrivial gap (opacity) and trivial gap (opacity). 

Next, we will focus on the propagation of edge states forming by two diverse opacities. To get a 
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better understanding of spinful edge states, we construct a one-dimensional interface along x axis formed 

between two semi-infinite materials. The edge dispersion for spin-up and -down can be presented as 

follows, 

( ) ( )2 2 2 2 2 2 2 2

1 0 1 1 1 1 2 0 2 2 2 2
1 2

2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2

/ /p x p z p p x p z p

x x

p p p p

k k k k
k k

          

       
=

− − − −
 + −

− − − −

  (7) 

where the subscripts 1 and 2 represent the materials on each side of interface. After solving Eq. (7), we 

can obtain the edge dispersion at an interface between an 0sC =  ordinary opacity (medium 1) and a 

1sC = −  topological opacity (medium 3) in Fig. 5(a). As the time-reversal partners, the dispersions for 

spin-up (blue) and spin-down (red) edge states are symmetrical with respect to the plane of kx = 0, and 

gaplessly cross over the complete gap. As a consequence, the rightward unidirectional propagation can be 

excited by a spin-up point source [blue vortex in Fig. 5(b)], as expected from the bulk topology. Such 

spin-momentum locking property is the photonic analog of quantum spin Hall effect. Figures. 5(c-f) show 

the simulation results (calculated by COMSOL Multiphysics) of optical propagation along the two 

interfaces, when the operation frequency of all excited source is  = 0.9op. The topological edge state 

can be robust against the ‘SYSU’ shaped bending, as depicted in Fig. 5(c). The incident light couple to 

rightward wave and pass through the bending interface without backscattering, even though using a 

spinless Ez-polarization source (black dot). For comparison, we also give a control case of gapped edge 

dispersion supported by an interface between two ordinary opacities (medium 1 and medium 2). Figs. 5(e) 

and 5(f) have the same numerical setup to the left panel, except for topologically trivial interface. Due to 

lack of topological protection, the interface wave is failure against both unidirectional excitation and 

robust propagation. 

In summary, we have successfully applied a topological index based on EM parameters to 

demonstrate the topologically nontrivial properties in a class of 2D PCM with bi-anisotropic response. 
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With an analytic deduction, we have concluded that the topology is determined by the sign of topological 

index. An example with Lorentz-like dispersion is given to verify this key point, including the evolution 

of topological index, pseudo surface impedance of bulk-edge correspondence, and topologically edge 

states. Since such index only depends on EM parameters, it will benefit to simplify the exploration of 

topological metamaterial, and will lead to novel fundamental physics and device applications in the field 

of metamaterial. Moreover, our method is compatible to analyze the topology of magnetized plasma [29, 

30], and the bi-anisotropic metamaterials have been constructed by EM-dual ‘meta-atom’ between two 

metal plates. [35, 36]. 
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Figures and Figure Captions 

  

FIG. 1. Topological phase map of photonic continuous media (PCM), which is divided into four quadrants, 

i.e. ordinary transparency, topological transparency, topological opacity and ordinary opacity. Red arrows 

indicate two types of topological transition. 
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FIG. 2. (a) Dispersion relation of electromagnetic-dual bi-anisotropic PCM. op is the in-plane oscillation 

frequency. The pink lines represent the band dispersions of two spin-degenerate bulk modes (referred as 

bands 1-4), while there are three cyan gaps I-III separated by these bands. (b) Spin-up Berry curvature + 

and schematic view of spin-up Berry connection A+  for bands 1-4. For band 3 (4), we can clearly observe 

the singular peak (dip) of Berry curvature at the center of k space, which is accompanied with 

anticlockwise (clockwise) vortex of Berry connection.  
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FIG. 3. (a) The square of effective refractive index (SERI) ( )2 2 2 /eff z p pn    = −  as a function of 

frequency. (b) Topological index 2 2

p  = −  as a function of frequency. Two zero-topological-index 

points ( 2 2 0p − = ) are highlighted as blue dots. (c) Evolution of topological phase map as the operation 

frequency increases continuously. The material response and numerals labels are identical to Fig. 2(a).  
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FIG. 4. (a) Definition of pseudo surface impedance as the ratio of the x-direction spin wave to the z-

direction spin wave. (b) Imaginary part of surface impedance for spin-up states in three different PCM, as 

the same EM parameters to Figure 2 except for normalized in-plane oscillation frequency. For simplicity, 

the pseudo surface impedances are only given in the opaque regions of each medium.  
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FIG. 5. (a) Edge dispersion at an interface between an 0sC =  ordinary opacity (medium 1) and a 1sC = −  

topological opacity (medium 3). (b) Rightward unidirectional couple excited by a spin-up point source 

(blue dot). The black arrows represent the in-plane components (x, y) of edge states. (c) Robust 

propagation of topological edge state against the ‘SYSU’ shaped bending, by using a spinless Ez-

polarization source (black dot). (d) Edge dispersion supported by an interface between two ordinary 

opacities (medium 1 and medium 2). (e, f) Same numerical setup to the left panel, except for topologically 

trivial interface.  

 


