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Dirac directional emission in 
anisotropic zero refractive index 
photonic crystals
Xin-Tao He, Yao-Nan Zhong, You Zhou, Zhi-Chao Zhong & Jian-Wen Dong

A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-
refractive-index medium. However, the discrete building blocks in such photonic crystals are limited 
to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show 
multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the 
zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an 
effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode 
near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel 
numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind 
of Dirac directional emitter is also verified even when multiple sources are randomly placed in the 
anisotropic zero-refractive-index photonic crystal.

Photonic crystals and metamaterials are artificial materials possessing fantastic properties to manipulate 
wave propagation beyond nature material. Recently, the concept of topological photonics gives a new 
way to reconsider band engineering in photonic crystals1–8. The emergence of conical dispersion at zone 
boundary plays an important role in the realization of photonic topological characteristics and relates to 
non-zero Berry phase. With opening a nontrivial gap, robust transport can be implemented in such top-
ological systems, and it has been distinctly observed pseudospin-filtered states in microwave metacrys-
tal9–10. Similarly, Weyl points and nodal points are theoretically predicted in time-reversal-invariant 3D 
and 2D photonic crystals11–13. Another kind of conical dispersion is found at the zone center, which is 
induced by triply accidental degeneracy in a class of high-symmetric dielectric photonic crystals14–20 and 
aperiodic quasi-crystals21. It arises to behave as a material with zero-refractive-index properties at Dirac 
frequency22–26. We focus on the use of conical-dispersion-induced zero-refractive-index medium, which 
can relieve the unwanted interference effect in directional radiation pattern when there is amount of 
gain medium in the directional emitter. In this way, the devices will be more efficient to be utilized for 
photonic integrated circuits.

In principle, homogeneous zero-refractive-index medium could be employed to design the direc-
tional emitter with flexible emission beam number and arbitrary output boundary27–30. However, as the 
building block of zero-refractive-index photonic crystal is discrete, the beam number and the boundary 
should be limited by the symmetry of photonic crystal. Isotropic conical dispersions have been found 
in photonic crystals with C4v and C6v symmetry14,18–19, and thus isotropic zero-refractive-index materials 
can be retrieved as long as the Dirac frequency is low enough to meet effective medium criterion31. 
Consequently, directional emitters of three, four, and six beams are straightforward to be achieved by 
using isotropic zero-refractive-index photonic crystals. But the multiport directional emitters with much 
larger number beams are more challenging due to symmetry broken.

In this paper, we proposed a kind of low-symmetric photonic crystals with conical dispersion only 
along the C2v symmetry axis. This semi-Dirac point, along with single-mode character near the Dirac 
frequency, ensures the existence of anisotropic zero-refractive index. Two sets of semi-Dirac points are 
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found in rhombic photonic crystals when the radii of the rods are fixed at two slightly different val-
ues. Several kinds of multidirectional emitters are demonstrated when the included angles of rhom-
bic lattices are 72°, 51.4°, 32.7°, and 26.7°, respectively. Spatial power combination for multidirectional 
emission can be also observed even when multiple sources are in random positions of the anisotropic 
zero-refractive-index photonic crystal.

Results
Semi-Dirac point in rhombic photonic crystals. Consider a two dimensional rhombic photonic 
crystal. The primitive lattice vectors are a a a1 2= =  and the included angle in between is θ =  72°, as 
shown in the inset of Fig. 1(a). The radius and the permittivity of the rods are r =  0.195a and ε = 12.5. 
We use plane wave expansion method to calculate the band structures32. Figure  1(a) shows the trans-
verse-magnetic bulk band along four different directions. Two linear branches along the Γ X direction 
(ky =  0, black solid) intersect at Γ  point at the Dirac frequency of fD =  0.5588c/a, while the dispersions of 
other directions (ky ≠ 0) are quadratic. Such anisotropic feature is called semi-Dirac point33–34 and can be 
understood by crystallographic point group symmetry17. In the rhombic lattice, conical dispersion can 
only emerge in the directions of either Γ X or Γ Y direction, as the eigenmodes at Γ  point should have 
the same symmetries related to the non-degenerately irreducible representations of C2v symmetry. 
Figure  1(b) highlights three bands near Γ  point along the Γ X and Γ Y directions in the left and right 
panels, respectively. At Γ  point, they are B2, B1 and A1 modes, where B1 and A1 modes overlap by acci-
dental degeneracy. For the Γ X direction [left panel in Fig. 1(b)], the red and yellow bands are both A 
modes as a result of conical dispersion. However, the mode symmetries along the Γ Y directions are quite 
different, as they are B and A modes. The lack of same symmetry in the Γ Y direction leads to quadratic 
dispersion when intersecting to each other [right panel in Fig.  1(b)]. Therefore, the conical dispersion 

Figure 1. Semi-Dirac point in rhombic photonic crystal. (a) Two dimensional band structure along four 
different directions: Γ X (ky =  0, black solid), Γ M (ky/kx =  tan18o, gray solid), Γ K (ky/kx =  tan54o, gray dash), 
and Γ Y (kx =  0, black dash). Inset is the lattice diagram. (b) Semi-X Dirac cone near Γ  point. The irreducible 
representations of eigenmodes are labeled. (c) Iso-frequency contours of the frequency slightly above the 
semi-Dirac point of fD =  0.5588 c/a. (d) Zoom-in plot of (c) to show elliptical profiles and single-mode 
feature within a small k region. (e) Iso-frequency contours of the frequency slightly below the semi-Dirac 
point, showing the hyperbolic profiles and multi-mode at high-k components. The colorbar represents the 
variation of frequency.
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can only be seen in the Γ X direction (ky =  0). Here, we define the conical dispersion along the Γ X direc-
tion as semi-X Dirac point. Another conical dispersion can emerge along the Γ Y direction when the 
radius deceases to 0.192a. For the latter case, the two modes along the Γ Y direction will change to both 
A modes, which is defined as semi-Y Dirac point (will discuss later).

Anisotropic zero-refractive-index in rhombic photonic crystals. Conical dispersion does not 
necessarily indicate zero permittivity and zero permeability unless the effective medium theory can be 
satisfactorily applied. But it is more complicated so that the effective medium theory is not straightfor-
ward to apply to such non-square rhombic lattice. Instead, the effective refractive index may be retrieved 
by iso-frequency contours (IFCs) in single-mode region. Figure  1(c) shows the elliptical IFCs near Γ  
point above the Dirac frequency. The frequency interval is from 0.5588 to 0.57c/a, which is also high-
lighted in Fig. 1(d). It is clearly shown only one propagating mode for a given frequency, implying that 
the rhombic photonic crystal with semi-X Dirac point can be regarded as anisotropic homogeneous 
medium with near-zero refractive index when the frequency is larger than that of semi-Dirac point. 
For example, the effective refractive indices at f =  0.559c/a are nx =  0.0016 and ny =  0.0062 according 
to the IFC in Fig. 1(d). Although the refractive indices in both x and y directions are close to zero, the 
emission behaviors are distinct from each other due to different impedances. This is verified in Fig. 2(a). 
Here, we fill the rectangle device with rhombic photonic crystal. The size of device is 47a ×  34a. A point 
source with the frequency of 0.559c/a is positioned in the center. In order to demonstrate the anisotropy 
of impedance, we put a homogenous medium with the same refractive index as the rhombic photonic 
crystal at f =  0.559c/a, but with different effective permittivity. Here, we use a phenomenological method 
to retrieve the effective permittivity εz. We define the intensity ratio to demonstrate anisotropic behaviors,

I I

I I 1xy
x y

x y
η =

−

+ ( )

where Ix and Iy are the average exit intensity from the x and y axis, respectively. When the intensity 
ratios are identical between of homogeneous medium and photonic crystal, we consider that the effective 

Figure 2. Anisotropic zero-refractive-index in rhombic photonic crystal. (a) Emission pattern from 
anisotropic zero-refractive-index photonic crystal with 72° rhombic lattice above Dirac frequency. (b) 
Output intensity ratio between the x and y directions, as a function of the permittivity of the anisotropic 
homogenous double near-zero (ADNZ) medium. The ADNZ material has the same effective refractive 
indices as (a) but different impedances/permittivity/permeability. (c) Emission pattern from the ADNZ 
material with the values of Zx =  2, Zy =  8, εz =  0.75 ×  10−3, μx =  5.13 ×  10−2, μy =  3.25 ×  10−3, which has the 
same intensity ratio as (a). (d) Emission pattern from the rhombic photonic crystal below Dirac frequency 
to show the absence of anisotropic near-zero and directional emission.
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permittivity of the crystal is equivalent to that of homogeneous medium. Then the other constitutive 
parameters can be obtained by35,

n Z n 2y x z x x z
2μ ε ε= / , = / ( )

n Z n 3x y z y y z
2μ ε ε= / , = / ( )

where n, ε, μ, and Z are the effective refractive index, permittivity, permeability and impedance, respec-
tively. We plot the intensity ratio as the function of the effective permittivity of the homogenous medium, 
as depicted in Fig.  2(b). It is interesting to find that the ratio will decrease to zero as the effective 
permittivity changes. In particular, the ratio is the same at 0.616 between the rhombic photonic crys-
tal [Fig. 2(a)] and the homogenous medium [Fig. 2(c)], when the homogenous medium is anisotropic 
double near-zero (ADNZ) material with the values of Zx =  2, Zy =  8, εz =  0.75 ×  10−3, μx =  5.13 ×  10−2 
and μy =  3.25 ×  10−3. In other words, the rhombic photonic crystal with semi-X Dirac point can be 
viewed as the ADNZ material, and the effective impedance along the Γ X direction (with conical disper-
sion) is less than that along the Γ Y direction (with quadratic dispersion). In addition, for the frequency 
interval below the Dirac frequency, the rhombic photonic crystal cannot be regarded as anisotropic 
zero-refractive-index material due to the multimode effects in high k components, which is also demon-
strated by the hyperbolic IFCs in Fig. 1(e). Consequently, the anisotropic directional emission vanishes 
when the frequency is slightly below semi-Dirac point, as depicted in Fig. 2(d).

Dirac directional emission. The anisotropic zero-refractive-index photonic crystals can be utilized 
to realize directional emission. Figure  3(a) shows the schematic view of cylinder-to-plane wave trans-
formation for the five-beam configuration. Five pieces of isosceles triangular structures are tiled to form 
the pentagonal shape. The output boundary is normal to the Γ X direction. There are 16 rods from the 
center to the vertex of the pentagon, and hence the radius of the pentagon is R =  15a. A point source 
at the frequency of 0.559c/a (slightly above semi-Dirac point) is embedded near the center of five-beam 
directional emitter. The emission field pattern is shown in Fig. 3(b). Zero-phase change is observed in the 
structure, and the source is converted into five directional plane waves after the exit surface. To further 
illustrate the effective zero-refractive-index properties, we will replace the rhombic photonic crystal by 
five pieces of anisotropic homogeneous materials with near-zero permeability identical to Fig. 2(c). Note 
that the optical axes of these five pieces homogeneous materials are perpendicular to the exit facet so 
that the permeability tensor should make an orthogonal transformation in real space. The transformed 
tensor can be written as,
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where θi =  54°, 126°, 198°, 270°, 342°, μxx,0 =  5.13 ×  10−2 and μyy,0 =  3.25 ×  10−3. Then we plot the varia-
tion of the output power as a function of the permittivity in Fig. 3(c). Because the impedance is serious 
mismatch to the air, the output power is close to zero when the permittivity is negative, and almost all 
of the energy is irradiative from the pentagon [left inset of Fig. 3(c)]. On the other hand, most energy 
leaks from the vertices of the pentagonal device when the permittivity is positive [right inset of Fig. 3(c)] 
due to anisotropy. When the permittivity approaches to zero, the output power is obviously enhanced, 
indicating that the impedance matches well when both ε  and μ  are close to 0. The corresponding field 
pattern of the anisotropic homogenous medium is highlighted in Fig. 3(d) at the working frequency of 
0.559c/a, which is quite similar to the result of the rhombic photonic crystal [Fig. 3(b)].

In the zero-refractive-index materials, the effective wavelength of electromagnetic wave is infinite, so 
that spatial coherence can be well maintained inside such material. One may imagine that the directional 
emission would occur even when multiple sources were embedded in the anisotropic zero-refractive-index 
material. Figure 4 shows three kinds of source configurations in the photonic crystals. Five sources are 
placed symmetrically at the distance of 0.5a and 5.5a away from the pentagonal center in Fig. 4(a),(b), 
while randomly in Fig. 4(c). The initial phases of the sources are identical and the working frequency is 
the same as Fig. 3. Normalized far-field patterns of five-beam directional emitter are plotted in Fig. 4(d), 
showing that the directional beams overlap well for all the three kinds of source configurations with 
symmetric radiation bandwidth. Note that the far-field pattern has little asymmetric intensity for the 
case of random configuration (blue curve) as the source locations mismatch to the symmetry of photonic 
crystals. In contrast, the directional feature will vanish when the sources are placed in air with improper 
positions. For example, omnidirectional radiation pattern is observed only when multiple sources are 
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placed close to each other [red in Fig. 4(e)], while messy radiation patterns for other two configurations 
[blue and green in Fig. 4(e)].

Discussions
The anisotropic zero-refractive-index characteristics can also be developed to directional emission with 
any number of beams, as long as tuning the included angle of rhombic photonic crystals. Here, we take 
seven-beam directional emitter for an example. The emitter is constructed by seven pieces of isosceles 
triangular structures. The radius of the heptagon is R =  15a and a point source is embedded near the 
center at the Dirac frequency. The included angle between the primitive vectors of the rhombic photonic 
crystal is tuned to θ =  51.4°. The relative permittivity is ε =  12.5. There are two sets of radii to ensure the 
presence of semi-Dirac point. When the radius is r =  0.173a, the conical dispersion exists along the Γ X 
direction and the semi-X Dirac point is at the Dirac frequency of 0.616c/a (red in Fig. 5a). However, the 
semi-X Dirac point does not ensure the effective zero-refractive-index properties. Single-mode character 
is another key factor. Figure  5(a1),(a2) depict the iso-frequency contours above and below the semi-X 
Dirac point, indicating that there is lack of single-mode region. Therefore, the directional emission 
behavior does not exist, as demonstrated in Fig. 5(b). The electric fields inside the sample are obviously 
distorted and the output beams are messy due to the excitation of high-k components. On the other 
hand, it is totally different when the radius of the rods is r =  0.178a. The conical dispersion is along the 
Γ Y direction [Fig.  5(c)] and the elliptical iso-frequency contours appear above the semi-Dirac point, 
so as to guarantee the single-mode character [Fig.  5(c1),(c2)]. The anisotropic zero-refractive index is 
expected in this kind of photonic crystal with semi-Y Dirac point. This is verified in Fig. 5(d) that seven 
directional beams can be clearly observed from the heptagonal device and the phase inside the device 
is almost constant. Note that the single-mode character can be just found in the case of semi-Y Dirac 

Figure 3. Dirac directional emission. (a) Schematic view of five-beam directional emitter by using 
anisotropic zero-refractive-index photonic crystal with 72° rhombic lattice. Five pieces of triangular-
profile structure are tiled in the x-y plane to form pentagonal shape, and the exit facet is normal to the 
Γ X direction. (b) Ez output fields from the zero-refractive-index photonic crystal. (c) Output power from 
the pentagonal device constructed by anisotropic homogeneous mu-near-zero materials with the values of 
μx =  5.13 ×  10−2 and μy =  3.25 ×  10−3. The sharp peak is the result of impedance match when ε ≈  μ ≈  0. (d) 
Ez fields from the pentagonal device when ε z =  0.75 ×  10−3 in (c). The electromagnetic indices are taken 
from Fig. 2(c).
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point when the included angle is less than 60°. Thus, the directional emitter with large number of beams 
should be realized in the anisotropic zero-refractive-index photonic crystal with semi-Y Dirac point.

Eleven-beam directional emitter is also demonstrated in Fig. 6(a), when using the rhombic photonic 
crystal with the included angle of 32.7°. The radius of the rods is r =  0.186a and the permittivity is 
ε = 12.5. The Dirac frequency is 0.66c/a and the conical dispersion is along the Γ Y direction. Far-field 
pattern (inset of Fig. 6a) is well consistent with the near-field electric field distributions. Note that the 
neighboring rods may touch each other in the rhombic lattice with small included angle when the radii of 
rods are not so small. One of the solutions is to enlarge the permittivity of the dielectric rods, so that the 
semi-Y Dirac point could exist for the rods with small enough radius. Figure 6(b) shows thirteen-beam 
directional emission by using the rhombic photonic crystal with the included angle of 26.7°. The radius of 
the rods is r =  0.156a, and the permittivity is ε = 20 The frequency of the semi-Y Dirac point is 0.622c/a.

In order to measure the directivity of emitters, a term is introduced,

D E E 5far far
max 2

= / ( )

where Efar
max and E far are the maximum and average values of the far field radiation patterns, respectively. 

Figure  7(a) shows the directivity as a function of the working frequency normalized by the Dirac fre-
quency fD. It is found that the high directivity can remain in the frequency interval from fD to 1.2fD, 
ensuring that the bandwidth of directional emission is substantial. This is because the directional emis-
sion can also be implemented in a small effective refractive index, not necessary for exact zero. On the 
other hand, one can also change the size of emitters in order to engineer the directivity, as depicted in 
Fig. 7(b). Optimal emitters can be retrieved by increasing the polygonal size of samples. Note that the 
directivity of multidirectional beam is suffered from the interferences of the adjacent beams, and longer 
exit boundary benefits to higher directivity. As a result, the five-beam emitter (shorter exit facet) is more 
directional than that of eleven beam (longer exit facet) when their sizes are same. Intuitively, when the 
beam number of emitters goes to infinity, multidirection turns to omnidirection with low directivity. 
Note also that the directivity increases with emitter size. This is because larger device size is closer to 
infinite crystal which is better described by effective medium theory.

Figure 4. Coherent multidirectional emission in anisotropic zero-refractive-index photonic crystal with 
72° rhombic lattice. (a)–(c) Locations of the five sources with same initial phases. The cases (a) and (b) 
have five-fold symmetry, same as the pentagonal device, while the position of the case (c) is random without 
rotational symmetry. (d) Far-field emission patterns. The directional patterns overlap well, regardless of all 
the three cases. (e) Same as (d) except in air.
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Figure 5. Seven-beam Dirac directional emission in photonic crystals with 51.4° rhombic lattice. 
(a) Semi-X Dirac dispersion when the radius is r =  0.173a and the permittivity is ε =  12.5.(a1)–(a2) The 
corresponding iso-frequency contours to show the multi-mode near Dirac frequency. (b) Ez fields of the 
heptagonal device to show the absence of zero-refractive-index feature. (c) Semi-Y Dirac dispersion when 
the radius is fixed at a slight difference value of r =  0.178a. (c1) Elliptical iso-frequency contours above Dirac 
frequency and (c2) Hyperbolic iso-frequency contours below Dirac frequency. (d) Ez fields of seven-beam 
directional emitter when zero-refractive-index is present.

Figure 6. Large-beam Dirac directional emission in photonic crystals. (a) Eleven-beam directional 
emitter in photonic crystal with 32.7° rhombic lattice. The parameters are r =  0.186a and ε =  12.5. (b) 
Thirteen-beam directional emitter in photonic crystal with 26.7° rhombic lattice, and the parameters are 
r =  0.156a and ε = 20. Blue curves in the insets are the corresponding far-field profiles in linear scale bar.
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In conclusion, we have studied a class of rhombic photonic crystal with C2v symmetry, consisting 
of dielectric circular rods. The semi-Dirac point and single-mode character ensure the anisotropic 
zero-refractive index and the anisotropic impedances in different directions. Dirac multidirectional emit-
ters with five, seven, eleven, and thirteen beams are achieved in such kind of low-symmetric rhombic 
photonic crystals with different included angles. Robustness of coherent directional emission is also 
found in the anisotropic zero-refractive-index photonic crystal, even when the sources are randomly 
placed inside the device.
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