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Manipulating pseudospin-polarized state of light in dispersion-immune photonic
topological metacrystals
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We propose a scheme that the material dispersion can be immune in a kind of photonic topological metacrystal
with uniform permittivity and permeability but staggered bianisotropy. The topological behaviors can be
maintained even though the metamaterials are intrinsically dispersive. A nontrivial topological band gap with a
large gap spin Chern number is confirmed in such dispersion-immune photonic topological metacrystals. Two
proposals of a robust pseudospin-polarized power splitter and a slow-light waveguide show evidence on the
manipulation of the pseudospin-momentum locked states in a backscattering-free manner. In addition, a realistic
design of a nontrivial dispersion-immune photonic metacrystal is also issued and discussed.
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I. INTRODUCTION

Manipulating frequency, polarization, and phase is a fea-
sible and efficient way to control flow of electromagnetic
waves in light science and application [1–6]. For example,
negative refracted light-beam steering was realized in optical
metamaterials by tuning the frequency of incident light [2].
Unidirectional coupling was achieved in a metasurface by
controlling the polarization of incident light [6]. In those
cases, the polarization of the output light is independent of
the momentum of photon and thus it cannot be distinguished
by different flow direction of light. Topological photonics
[7–27], which originated from the concept of topological
protection in condense matter, brings a breakthrough on such
topic. Nontrivial topological protected edge states have been
found in many photonic topological band gap systems, for
example, magnetic photonic crystals [9–13], bianisotropic-
based photonic topological insulators [14–16], resonating
lattices [17–20], evanescently coupled helical waveguides
[21,22], and gyroid photonic crystals [23]. In certain systems,
the exotic edge states will become pseudospin-momentum
entangled, meaning that the direction of light is locked
to the pseudospin polarization. The pseudospin-momentum
locked state provides a new degree of freedom to manipulate
electromagnetic waves in photonic devices. Further, photonic
topological behavior benefits on overcoming propagation loss
in disorder senstitive structures, such as slow-light and An-
derson localization in photonic crystal waveguides. However,
the photonic topological properties can be weakened and
sometimes may be eliminated by the material dispersion,
which is inevitable due to the law of causality. It is of great
importance to cope with such an intrinsic material dispersion
in photonic topological systems.

In this paper, we propose a kind of photonic topological
metacrystals in which the material dispersions can be immune.
We have constructed a triangular photonic metacrystal with
uniform permittivity and permeability but staggered bian-
isotropy, in which the ε/μ-matching condition is naturally
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fulfilled as only one bianisotropic material is used. Orig-
inated from modes exchange at high-symmetry k points,
a topological phase transition and a nontrivial band gap
with a large gap spin Chern number have been realized
in the dispersion-immune photonic topological metacrystals.
Robust pseudospin-polarized power splitter and slow-light
waveguide are discussed to show the ability of manipulating
the pseudospin-momentum locked states of light. Lastly, a re-
alistic experimental proposal of nontrivial staggered photonic
metacrystal is designed.

II. DISPERSION-IMMUNE PHOTONIC TOPOLOGICAL
METACRYSTAL

Photonic topological metacrystals can be realized in bian-
isotropic photonic metacrystals in which nontrivial photonic
gaps are derived from the cross coupling of transverse electric
(TE) and transverse magnetic (TM) polarized modes. The cross
couplings can be achieved by introducing either realistic or
effective bianisotropy. Pure pseudospin-up/pseudospin-down
states can be formed by the in-phase/out-of-phase TE-TM
coupled modes in a metacrystal when the ε/μ-matching
condition is satisfied. But such condition is mostly too harsh
to be fulfilled due to the intrinsic material dispersion. A
representative configuration [left in Fig. 1(a)] is constructed
by bianisotropic rods (green with down arrows) sitting in a
nonbianisotropic background material (purple). Each material
has its own set of dispersive constitutive parameters, and
thus the ε/μ-matching condition will be fulfilled just at the
frequency of ω0, while broken down away from ω0 [middle in
Fig. 1(a)]. It will result in the nondegeneration of TE and TM
polarized modes and the mixture between pseudospin-up and
pseudospin-down states [right in Fig. 1(a)]. If the ε/μ mis-
match becomes much more serious, the topological band gap
will even close. But such dilemma can be removed by using the
idea of staggered arrangement. As illustrated in the left panel
of Fig. 1(b), the staggered photonic topological metacrystal is
constructed by only one kind of metamaterial with uniform
permittivity and permeability but opposite bianisotropic coef-
ficient in the “rod” and “background” regions, corresponding
to the up and down arrows in Fig. 1(b). It is obvious that the
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FIG. 1. (Color online) Schematic of two different structures to
achieve photonic topological insulators. (a) Bianisotropic photonic
metacrystals consisting of highly dispersive bianisotropic rods (green
with down arrows) and nonbianisotropic background (purple). The
ε/μ-matching condition can just be satisfied at the cross point
of ω0, resulting in the mixture of pseudospin-up and pseudospin-
down modes. (b) Dispersion-immune photonic topological insulators:
staggered photonic metacrystals consisting of uniform permittivity
and permeability (green) but opposite bianisotropy (different arrow
direction) in the “rod” and “background” regions. Although it is
highly dispersive, the ε/μ-matching condition is naturally fulfilled,
and thus the photonic topological band gap does not have an effect.
Note that the small shift in the middle and right panels of (b) is for
better visualization only.

ε/μ-matching condition can be automatically fulfilled at each
frequency even if the metamaterial is highly dispersive [middle
in Fig. 1(b)]. The resultant band gap is derived by Bragg
scattering of periodic bianisotropy. It does not suffer from
the frequency dispersion, which distinguishes from the band
gaps born of periodic permittivity and permeability potentials.
Consequently, the photonic topological band gap is immune to
the material dispersion of the bianisotropic metamaterial. Note
that the opposite bianisotropy can be realized by flipping the
orientation of the split-ring resonators which will be shown in
Sec. III E and Fig. 8.

Next we consider a concrete numerical example of
triangular staggered photonic metacrystal in order to
confirm the dispersion-immune concept. The unit cell of
the metacrystal consists of a rod with a radius of 0.3a

embedded in the background material, where a is the
lattice constant. All materials are bianisotropy with the

reciprocal constitutive relations of
⇀

D = ε0
↔
εr

⇀

E + ↔
ζ

⇀

H and
⇀

B = μ0
↔
μr

⇀

H + ↔
ζ

⇀

E. Here,
↔
ζ is the magnetoelectric coefficient

tensor with nonzero elements of ζ12 = ζ ∗
21 = iζ0/c.

↔
εr and

↔
μr = ↔

εr/α = diag(μr‖,μr‖,μrz) are the relative permittivity
and permeability, where α is a constant. In order to
demonstrate the dispersion-immune concept, we assume
the numerically artificial frequency-dependent formula:
↔
εr(ω) = 2 − (1.1πc/ωa)2 and

↔
μr = 1 for all metamaterials.

The losses of metamaterials are ignored to simplify the
numerical simulation. It is noted that the dispersion-immune
concept in the staggered photonic metacrystals would work

FIG. 2. (Color online) Photonic band structure of triangular stag-
gered photonic metacrystals constructed by dispersive metamaterials.
A Drude model is applied to the metamaterial as a typical frequency-
dependent relation. The losses of metamaterials are ignored to
simplify the numerical simulation. The metamaterials have opposite
bianisotropic response between the rod and the background. Both
doubly degenerate bulk bands and topologically nontrivial band gaps
are found in this dispersion-immune photonic topological insulator.
The spin Chern number of each band is determined by analyzing the
irreducible representations of eigenmodes at high-symmetry k points
and obtaining the corresponding Cn-rotation eigenvalues.

no matter what frequency-dependent model is applied to the
constituent materials. The staggered binisotropy is set as ζ0 =
−0.84 in the “rod” and ζ0 = 0.84 in the background. Figure 2
shows two lowest bulk bands calculated by adding bian-
isotropic constitutive equations into COMSOL Multiphysics.
The time-reversal pair of pseudospin-polarized states can

be retrieved by introducing the pseudofields (
⇀
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⇀

P−) ≡
(
√

αε0
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E + √
μ0

⇀

H,
√

αε0
⇀
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μ0

⇀

H). The pseudospin-
up/pseudospin-down state has the form of (P ∓

x ,P ∓
y ,P ±

z )T

because the full-vector Maxwell equations can be decomposed
into two decoupled subspaces, i.e.,
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Figure 2 illustrates that each band is doubly degenerate,
even when the bianisotropic material is dispersive. A photonic
band gap is found within the normalized frequency ranges of
0.58–0.66 (yellow). To characterize the topological feature, we
calculate the spin Chern number of each band. In principle,
the spin Chern number of the mth bulk band (Cm

s ) can be
calculated with the determinant of the closed loop integral of
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the Berry connection along the boundary of the Brillouin zone.
When photonic crystals are Cn invariant, Berry connections
at the Cn-rotation connected k points are equal. So one just
needs to integrate the Berry connection along the boundary
of the irreducible Brillouin zone and get one-nth of the Berry
phase (i.e., 2πCm

s /n). Due to the periodicity of the irreducible
Brillouin zone and the Cn invariance, the determinant of the
closed loop integral can be evaluated with the determinant of
the sewing matrix at high-symmetry reciprocal k points [28].
For the triangular lattice, one can determine the spin Chern
number as follows:

ei[(2π/6)Cm
s ] = ei[(2π/6)C+

m] = η+
m(	)θ+

m (K)γ +
m (M), (3)

where η+(	), θ+(K), and γ +(M) represent the eigenvalues of
C6, C3, and C2 rotation operators on the pseudospin-up modes
at 	, K , and M points, respectively. Analyzing the irreducible
representations of eigenmodes at high-symmetry k points
helps to obtain the corresponding Cn-rotation eigenvalues
illustrated in Fig. 2. Note that one should change the field
patterns in COMSOL results to their conjugated parts because
we assume the harmonic time dependence to be e−iωt .
Note also that one should do the rotation operator on the
pseudospin-up polarized mode which refers to the pseudofields
(P ∓

x ,P ∓
y ,P ±

z )T . Results show that the spin Chern number of
the two lowest bands is 1 and 0, respectively. Therefore, the gap
spin Chern number (Cs-gap = ∑

m Cm
s ) is 1 for the lowest band

gap, indicating that the band gap is topologically nontrivial.
In short, the staggered photonic metacrystal can serve as a
dispersion-immune photonic topological insulator, even if the
constitutive materials are dispersive.

III. RESULTS AND DISCUSSIONS

A. Pseudospin-momentum locked edge states

To generalize the dispersion-immune concept in stag-
gered photonic metacrystals, we consider another bian-

isotropic medium with a relative permittivity of
↔
εr and a

relative permeability of
↔
μr = ↔

εr/α = diag(μr‖,μr‖,μrz) =
diag(μr‖,μr‖,μr‖β), where α and β are constants. Due to the
scaling law of Maxwell equations, eigenmodes of the material

configuration (
↔
εr,

↔
μr,

↔
ζ ) can be obtained by scaling down (or

scaling up) those of the “air” configuration (1,1,
↔
ζ/μr‖

√
α),

regardless of material dispersion. Therefore, without loss of
generality, we apply the nondispersive “air” configuration for
triangular staggered photonic metacrystals for simplification.
Note that material dispersion does not change the topological
feature [9,14,15] and the results in this paper are general for
staggered photonic metacrystals with square or honeycomb
lattices.

Figure 3(a) shows the bulk band structure of the dispersion-
immune photonic topological metacrystal for ζ0 = 0.84. There
are four photonic band gaps below the frequency of 2(c/a),
which are characterized by the gap spin Chern numbers of
1, 1, −2, and 0, respectively. It indicates that the three
lowest band gaps are topologically nontrivial as Cs-gap is
nonzero, while the fourth band gap is trivial. Meanwhile,
the first two band gaps are topologically distinct from the
third band gap because they have different gap spin Chern

FIG. 3. (Color online) Bulk bands and pseudospin-momentum
locked edge state in triangular staggered photonic metacrystals. (a)
Bulk bands with spin Chern number for ζ0 = 0.84. The nondispersive
“air” configuration is assumed. A nontrivial topological band gap with
a large gap spin Chern number is found in the third band gap. (b)–(d)
Pseudospin-momentum locked edge states along the 	K direction in
the four lowest band gaps, of which the topological characters are
accurately predicted from the gap spin Chern number calculated by
group theory.

numbers. The topological distinction of the band gaps can
be witnessed from the pseudospin-momentum locked edge
states. To this end, we constructed an edge along the 	K

direction between the staggered photonic metacrystal and the
trivial gap material which does not allow any electromagnetic
energy to enter. For a realistic material point of view, there
are two ways to achieve the trivial gap material. One is to
use another photonic metacrystal with trivial complete band
gap. A representative design is using an array of perfect electric
conductor meta-atoms with different shape [15]. The other way
may be using a gap material, so-called perfect electromagnetic
conductor [29–31], which is out of the scope of this paper.

For simplicity, the gap material is numerically set with
↔
εr =

↔
μr = diag(1,1,−10 000) in the simulation. Figure 3(b) shows
that there is only one gapless pseudospin-polarized edge state
spanning the whole gap for the first two band gaps. It is
consistent with the fact of Cs-gap = 1. The group velocities
of pseudospin-up edge states (blue) point to the +x direction,
while those of pseudospin-down edge states (red) point to the
−x direction. These pseudospin-momentum locked edge states
are similar to chiral edge states in quantum Hall systems with
opposite external fields. For the third band gap with large gap
spin Chern number to be −2, there should be two gapless edge
states pointing to the directions opposite to those in the first
two lowest band gaps [32]. This is also verified in Fig. 3(c). The
origin of such large gap spin Chern number will be discussed
in the next section. For comparison, the fourth band gap has
zero gap spin Chern number, and thus the pseudospin edge
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states are gapped and form a closed loop instead of a gapless
connection [Fig. 3(d)].

B. Origin of topological band gap with large gap
spin Chern number

Topological band gaps with a large gap spin Chern number
enable multimode waveguides with increased mode density
and higher coupling efficiency [13]. To investigate the origin
of the nontrivial topological band gap with a large gap spin
Chern number, we focus on the third band gap and plot the
gap map as a function of ζ0 in Fig. 4(c). One can see that
such a gap map has three topological isolated phases, each
of which cannot be adiabatically connected to its neighboring
phase without closing and reopening the band gap. In order to
visualize the phase transition, we plot the three-dimensional
band structure near the critical transition point, as shown in
Fig. 4(a), giving an indication of the closing and reopening of
the gap. We also plot the mode evolutions at the 	 point in
Fig. 4(b). When ζ0 reaches 0.816, two modes with different
irreducible representations are accidentally degenerate [red
solid circle in Fig. 4(b)]. After the phase transition, they will
exchange the sequence, resulting in the change from trivial gap
(Cs-gap = 0) to nontrivial gap (Cs-gap = −2). Another similar
topological phase transition occurs at ζ0 = 0.858 related to two

nontrivial topological phases. Near the latter critical transition
point, two different eigenmodes at the M point approach
closer and closer, then exchange and move apart [Fig. 4(d)].
The bulk frequency band gap will close and reopen along
with the change of gap spin Chern number [Fig. 4(e)]. As a
result, the band gap becomes another nontrivial band gap.

C. Robust pseudospin-polarized power splitter

Dispersion-immune photonic topological metacrystals do
benefit the applications of a polarization-controllable and
disorder-insensitive photonic circuit. Here we discuss a
pseudospin-polarized power splitter, as illustrated in Fig. 5.
The power splitter is constructed by capping the triangular
staggered photonic metacrystal with the gap material. A
harmonic line Hz source H = Hze

−iωt ẑ (green) and a harmonic
line Ez source E = Eze

−iωt ẑ (purple) are excited at the same
spot on the left corner of the splitter. The operating frequency is
set to be 0.71(c/a) at which the staggered photonic metacrystal
behaves as a photonic topological insulator. The amplitude of
the line Hz source is kept as the constant of

√
μ0/ε0, while the

line Ez source is assumed to change and it is used to excite
pseudospin-polarized modes with different ratios. As a result,
the power flow can be automatically selective to propagate
along either the upper or lower waveguide port. For example,

FIG. 4. (Color online) Origin of topological band gap with large gap spin Chern number. (a) Three dimensional eigenfrequency surfaces
near the 	 point and (b) evolutions at the 	 point in the vicinity of ζ0 = 0.816 showing the closing and reopening of the third gap. Red circle in
(b) marks the exchange point between two modes with different irreducible representations at the 	 point. (c) Gap map of the third band gap.
Topological phase transition happens twice as the Cs-gap takes two jumps of −2 and 3 due to mode exchange at the 	 and M points. Blue and
pink represent nontrivial band gaps with Cs-gap = 1 and −2, while red represents trivial band gap with zero Cs-gap. (d) and (e) are similar to (b)
and (a) but for another topological phase transition.
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FIG. 5. (Color online) Pseudospin-polarized power splitter. An Hz point source (green) and an Ez point source (purple) with a frequency
of 0.71(c/a) are excited at the same spot at the left-middle end of the splitter (source icons are shifted separately for clarity). The amplitude and
direction of the Hz point source is kept as

√
μ0/ε0, while those of the Ez point source is changed for selectively exciting pseudospin-polarized

states with different ratios. The majority of excited electromagnetic waves proceeds to (a) port 2 when Ez = −1 and (c) port 1 when Ez = 1.
(b) and (d) show the phase differences between the z components of electric and magnetic fields, indicating that port 2 and port 1 are
pseudospin-down and pseudospin-up ports, respectively. The regions that do not carry useful information are shaded. (e) The splitting ratio as
a function of the amplitude and direction of the Ez point source.

when Ez = −1, the majority of the power flow is modulated
into the lower waveguide [port 2, Fig. 5(a)]. The phase
difference between the z component of the electric field and the
magnetic field along the lower waveguide is approximate to π

(or equivalently −π ) [highlighted part in Fig. 4(b)]. When Ez

changes from −1 to 1, the source changes to be pseudospin-up,
and consequently, the flow of light is manipulated from port
2 to port 1 [Fig. 5(c)]. The phase difference along the upper
waveguide turns to be zero [Fig. 5(d)]. Figure 5(e) and the
online video [33] show a much more complete picture on the
pseudospin-polarized power splitter.

Next, we investigate the robust transport behavior in the
pseudospin-polarized power splitter. Figure 6 shows the field
patterns of the z component of the electric field with the
excitation of pseudospin-up source in the presence of various
kinds of defects. Here, we introduce a lightning-shaped opaque
obstacle [Fig. 6(a)], missing rods [Fig. 6(b)], and shifting

rods [Fig. 6(c)] into the upper waveguide. We see that the
electromagnetic waves can go around the defects and keep
moving rightward. Further, we also see that there is no
Fabry-Pérot interference fringe on the left of the defects
[see the zoom-in parts in Figs. 5(a)–5(c)], indicating that the
pseudospin-polarized power splitter is backscattering-free and
the waveguide channel is robust. A more complicated defect
is presented with the combination of the above three defects.
Again, we find the robust transport behavior in Fig. 6(d). The
robustness of the spin-polarized power splitter is topologically
protected by the photonic topological insulator.

D. Slow-light waveguide

In this section, we discuss the potential application of slow
light in dispersion-immune photonic topological metacrystals.
The slow-light waveguide is constructed by capping the
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FIG. 6. (Color online) Robust transport of the power splitter. The field patterns of the z component of the electric field in the presence
of defects with (a) a lightning-shaped opaque obstacle, (b) missing rods, (c) shifting rods, and (d) the combination. Insets: the zoom-in field
patterns on the left of defects. The pseudospin-up source is used in the simulation.

triangular staggered photonic metacrystals with the trivial
gap material [inset of Fig. 7(b)]. The pseudospin-momentum
locked edge dispersion can be engineered by shifting the
position of the first row of bianisotropic rods. The displacement
of shifted rods from the unmodified lattice is denoted as
s1, which is a positive number when shifting toward the
trivial insulator. Figure 7(a) shows that the edge dispersion
in the first lowest band gap becomes flat in the vicinity of
0.69(2πc/a) when s1 = −0.26a. This is different from the
case of s1 = 0 [Fig. 3(b)], where no slow-light dispersion
is found. We emphasize that such slow-light waveguide can
manipulate the flow of light in a backscattering-free manner.

FIG. 7. (Color online) Robust slow-light waveguide. (a) The
pseudospin-momentum locked edge dispersion in the first gap
when s1 = −0.26a. Here s1 is the distance of the first row of
bianisotropic rods from the unmodified lattice (black dashed line).
Gapless pseudospin-polarized edge states are tailored by changing
the morphology of edge. (b) Enlarged dispersion in the vicinity of the
frequency of 0.69(c/a). The dispersion is flat and has the potential
capability to realize slow-light waveguides.

The dispersion of such robust slow-light waveguide can be
pursued to achieve a much slower group velocity and larger
group index by further shifting the position of the second row
of rods, or by adjusting the radius of the first two rows of rods.

E. Experimental proposal

Lastly, we discuss the experimental realization of the
nontrivial staggered topological photonic metacrystal by em-
ploying a staggered split-ring array. Consider a bianisotropic
photonic metacrystal whose unit cell is outlined by a hexagonal
prism, depicted by the purple color in Fig. 8(a). The unit cell
has one downward split ring embedded in air background. A
split ring is made by a perfect electric conductor and provides
large bianisotropy. However, since the material dispersions
are different between the split ring (bianisotropic “rod,” green
hexagonal prism) and the air background, the pseudospin-up
and pseudospin-down states are mixed together, as shown
in Fig. 8(b). In contrast, the staggered topological photonic
metacrystal is formed by split rings with opposite orientations
instead of the air background. Figure 8(c) illustrates that the
unit cell is constructed by one red downward and two blue
upward split rings. Consequently, the inner green hexagonal
region and the background region have uniform effective
permittivity and permeability, while opposite bianisotropy.
Thus the ε/μ-matching condition is fulfilled. The simulated
band structure in Fig. 8(d) indicates that the pseudospin-
up and pseudospin-down states are decoupled and almost
overlapped at each k point. The slight shift at higher-order
bands between two pseudospin polarizations is caused by the
nonlocal effect. A nontrivial photonic band gap characterizing
with Cs-gap = 1 ranges from 0.177(c/a) to 0.194(c/a). As
a whole, the nontrivial staggered photonic metacrystal is
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FIG. 8. (Color online) Experimental realization of the nontrivial staggered topological photonic metacrystal. (a) Bianisotropic photonic
metacrystal with a unit cell of one downward split ring (red) embedded in air background. The sizes of the upper long, middle high, and lower
short segments are 0.55a ∗ 0.05a ∗ 0.03a, 0.02a ∗ 0.03a ∗ 0.37a, and 0.14a ∗ 0.05a ∗ 0.03a, respectively. The corresponding band structure
is shown in (b), in which the pseudospin-up and pseudospin-down states are mixed together due to different material dispersions of split ring
and air background. (c) Staggered photonic metacrystal constructed by split rings with same size but opposite orientation, i.e., downward in
the “rod” (red), while upward in the “background” (blue). The corresponding band structure is shown in (d), in which the pseudospin-up and
pseudospin-down states are decoupled, and they are almost overlapped at each k point, except a little bit of deviation at higher bands due to
nonlocal effect. The nonzero Chern numbers of the lower bands demonstrate the nontrivial band gap from 0.177 to 0.194c/a. See more in the
text.

achieved and it may be readily realizable at microwave
frequency.

IV. CONCLUSION

In conclusion, we propose a scheme to realize dispersion-
immune photonic topological metacrystals. The material
dispersions can be immune when the photonic metacrystals
are constructed by materials with uniform permittivity and
permeability but staggered bianisotropy. The ε/μ-matching
condition is naturally fulfilled even for highly dispersive
metamaterials. Such dispersion-immune concept is demon-
strated in the triangular staggered photonic metacrystal. The
pseudospin-momentum locked edge states are presented and

a nontrivial band gap with a large gap spin Chern number
is realized. A robust pseudospin-polarized power splitter
and slow-light waveguide are discussed as examples of ma-
nipulating pseudospin-polarized states in dispersion-immune
photonic topological insulators. In addition, the experimental
proposal constructing by staggered spilt-ring metamaterials is
also discussed.
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