3460

OPTICS LETTERS / Vol. 38, No. 17 / September 1, 2013

Robust flow of light in three-dimensional dielectric
photonic crystals
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Chiral defect waveguides and waveguide bend geometry were designed in diamond photonic crystal to mold the
flow of light in three dimensions. Propagations of electromagnetic waves in chiral waveguides are robust against
isotropic obstacles, which would suppress backscattering in waveguides or integrated devices. Finite-difference
time-domain simulations demonstrate that high coupling efficiency through the bend corner is preserved in
the polarization gap, as it provides an additional constraint on the polarization state of the backscattered wave.
Transport robustness is also demonstrated by inserting two metallic slabs into the waveguide bend. © 2013 Optical

Society of America
OCIS codes:
http://dx.doi.org/10.1364/0OL.38.003460

Robust transport refers to the insusceptibility of an
electron’s propagation to impurity or disorder, which
is a distinguishing feature of topological states (chiral
edge states of quantum Hall insulators [1,2] and helical
edge states of quantum spin Hall insulators [3]). As the
concepts of electronic topological states were mapped
to the photonic system [4-13] in the past few years,
researchers found that edge states of certain types of
photonic crystals (PhCs) have robust transport proper-
ties similar to electrons. Light scattering loss and attenu-
ation in either waveguides or integrated devices, which
are attributed to the fabrication error or deformation of
devices, limit optical communication distance and the
efficiency of devices. Therefore, the robust transport
properties of electromagnetic waves have great signifi-
cance in the era of optical communication, for their
capability to suppress light backscattering or attenuation
in optical circuits.

Two types of robust transports based on topological
bands of PhCs have been proposed and investigated.
One relies on one-way transport of light at the edge of
photonic quantum Hall insulators [4-12]. By applying an
external magnetic field on two-dimensional (2D) mag-
netic PhCs, photonic bands of the time-reversal broken
system acquire nonzero Chern numbers, and thus one-
way edge states appear in the topologically nontrivial
bandgap. The propagation of light is robust against back-
scattering from obstacles due to the lack of a backward
propagating mode. The other type of robust transport
based on topological bands was proposed very recently
along with photonic quantum spin Hall insulators [13].
The magneto-electric coupling effect of 2D bianisotropic
PhCs composed of conceptual metamaterials emulates
the spin-orbit coupling of electrons. The corresponding
photonic bands of the time-reversal invariant system
acquire nonzero spin Chern numbers. Gapless spin-
polarized edge states also appear in the topologically
nontrivial bandgap. The propagation of light can be also
backscattering-immune for the decoupling between for-
ward edge states and backward edge states. However,
both types mentioned above are hardly to be extended
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to the optical communication regime, for the reason of
the weak gyrotropic effect of magnetic materials and
strong loss-dispersive metamaterials, respectively. An-
other issue is that the flows of light in the above two
methods are usually restricted in the 2D plane, because
backscattering immunity disappears in the third dimen-
sion. Similar topologically protected transport can also
be achieved in the microwave regime via 2D networks
of metamaterial elements [14]. Photonic Floquet topo-
logical insulators [15] were proposed to realize robust
edge states for visible light, but 10 cm long waveguide
arrays are required.

For these reasons, we proposed another type of robust
transport mechanism [16], which can be realized in the
topologically trivial bandgap of dielectric layer-by-layer
PhCs. It is based on chirality of guided modes in the
waveguides with chiral geometry. The helical symmetry
of the chiral waveguide lifts off the degeneracy between
left-handed (LH) and right-handed (RH) waveguide
modes, and opens a polarization gap that allows only
one particular circularly polarized wave to propagate.
Reflection from an isotropic scatterer would change
the handedness of guided waves in the chiral waveguide,
but propagation of the opposite handedness wave is for-
bidden in the polarization gap. Consequently, the flow of
light is robust (but still two-way) against backscattering
from an isotropic obstacle. This mechanism requires
neither time-reversal breaking nor magnetic materials
and bianisotropic metamaterials. This is similar to the
fact that electronic transport in topological insulators is
robust only when the impurity is nonmagnetic, although
the gap topology is completely different. As the PhC is
composed of all dielectrics, it can be scaled into all
frequency ranges, as well as the optical communication
regime. In addition, the layer-by-layer geometry of the
PhC has the natural advantage that it can control the flow
of light in all three dimensions.

In this Letter, we designed a chiral defect waveguide
and a waveguide bend geometry in diamond PhCs. The
motivation is to design a bend channel in which the en-
ergy will not be reflected even if the isotropic obstacle
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is introduced, so as to achieve robust flow of light in
three dimensions. Transmission spectra through the
waveguide bend and a straight waveguide were studied.
We found that the coupling efficiency in the polarization
gap was intensively preserved by the backscattering
suppression effect. Robustness against isotropic ob-
stacles was also demonstrated in the bend waveguide.

We choose diamond PhC to construct a three-
dimensional waveguide network because diamond
lattice has the largest complete bandgap and three sym-
metrical crystal orientations [(100), (010), and (001)].
Thus, chiral waveguides along these directions can have
the same geometry and dispersion relation in order to at-
tain a broader working bandwidth.

A chiral defect waveguide in PhCs can be constructed
by removing or infiltrating dielectric materials surround-
ing the spiral axis. Figure 1(a) depicts a spiral with LH
geometry along the z direction [(001) crystal orientation]
by connecting lattice points [17]. Figure 1(b) shows the
morphology of a chiral defect in a diamond PhC, by re-
moving an LH spiral [Fig. 1(c)]. In our simulations, the
diamond PhC, whose lattice constant is assumed to be
a, is made up of dielectric material with a refractive index
of 3.6 and air background. The size of the chiral defect is
0.424a x 0.424a. The corresponding dispersion relation
was calculated by the plane wave expansion method
[18], as shown in Fig. 1(e). The upper and lower gray re-
gions correspond to the passing bands, between which is
a complete bandgap. There are four handed nondegener-
acy defect modes in the complete gap, two of which are
LH polarized, and the others are RH polarized. Here, LH
and RH polarizations indicate that the electric field vec-
tors of the defect modes form LH and RH helices along
the propagation direction at a fixed instant of time. The
most important is that an RH polarization gap with a
relative bandwidth of 5.9% opens up at I" point from the
normalized frequency 0.478 to 0.507(c/a), where robust
transport occurs [16]. To give an overview on the eigen-
field distribution of the defect mode, an iso-amplitude
surface (red) of the magnetic field is plotted in Fig. 1(d),
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Fig. 1. Schematic of the chiral waveguide and the dispersion
relation. (a) An LH spiral formed by connecting lattice points
in diamond lattices. The black frame represents a cubic unit
cell. (b) LH chiral defect by removing the LH spiral in diamond
PhC. The blue frame denotes the edges of the chiral defect.
(c) Segment removed from diamond PhC. (d) Iso-amplitude sur-
face of magnetic field for the LH waveguide mode at 0.49(c/a).
(e) Dispersion relation of LH waveguide along the z direction in
diamond PhC.

September 1, 2013 / Vol. 38, No. 17 / OPTICS LETTERS 3461

for the LH defect mode at a frequency of 0.49(c/a). It can
be seen that the magnetic fields are mainly localized
around the missing spiral. In the same way, the LH defect
waveguides along the x and y directions can also be con-
structed, and the dispersion relations are identical to
those of Fig. 1(e). It is notable that the dispersion relation
of the RH defect waveguide is alike, except that the
polarization characteristics are reversed.

Next we will design the bend geometry of the chiral
waveguide in order to obtain a high coupling coefficient.
Without loss of generality, we only discuss the coupling
between waveguides along the 2 and x directions. There
are two kinds of bends depending on whether two chiral
waveguides have the same handedness. Suppose that the
2 direction waveguides in both cases are LH. Figure 2
shows the schematic diagram near the corner in lattice
form. Gray spheres represent the lattice points of the
missing spirals, and the light blue (red) columns connect-
ing them are the spirals’ arms. Blue (red) square tubes
outline the defect boundaries, inside which is vacuum.
The LH circularly polarized wave is incident from the bot-
tom and couples into the LH chiral waveguide along the
2 direction. And then the guided wave is coupled to an-
other LH/RH waveguide through the corner. We will dis-
cuss the coupling efficiencies when the transmitted
waveguide in the x direction is LH or RH.

The coupling efficiency between two guided modes is
closely related to the spatial distributions, polarization
directions, and temporal evolutions of the eigenmodes.
Once these features of two modes match well, the
coupling between them should be strong. As has been
mentioned in [16], fields of the defect modes in the polari-
zation gap are localized around the missing spiral and the
circular polarization has the same handedness with
defect. Consider the case in which the transmitted wave-
guide is LH, which is represented by a horizontal blue
tube in Fig. 2(a). The yellow cylinder highlights the over-
lapped region of the vertical and horizontal missing
spirals, where modes’ coupling may occur. However, the
polarization states of both modes do not match in
the overlapped region. Black circular arrows near the
waveguide entrance and exit denote two waveguide
modes’ polarization planes and rotational directions of

Fig. 2. Two schematic diagrams for bends between wave-
guides in the z and x directions. (a) WGZ-WGX (L2L): LH wave-
guides in both directions. (b) WGZ-WGX (L2R): LH waveguide
in the z direction and RH waveguide in the x direction. Three
cubic cells are shown in both figures. Each arrow near the
entrance/exit denotes either the incident or the transmitted
wave, and the circular arrow around it denotes the rotational
direction of electromagnetic fields.
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electric fields. The electric field of the vertical mode is
polarized in the xy plane and rotates counterclockwise,
while the electric field of the horizontal mode is polarized
in the yz plane. As a result, the coupling efficiency be-
tween two LH waveguides would be relatively low.

Then we consider the other case in which the transmit-
ted waveguide has opposite handedness to the incident
waveguide; see Fig. 2(b). The RH transmitted waveguide
is represented by a horizontal red tube. We find that the
vertical and horizontal waveguides have two spiral arms
in common (highlighted by yellow cylinders). This indi-
cates that coupling should be stronger than the bend
geometry in Fig. 2(a), which has only one common spiral
arm. It is notable that the handedness of the circularly
polarized wave propagating in the vertical and horizontal
waveguides is opposite. The electric field of the vertical
mode rotates counterclockwise in the xy plane, while
that of the horizontal mode rotates clockwise in the yz
plane. To satisfy the conservation of the tangential elec-
tric/magnetic field at the boundaries of the bend corner,
we can simply set the corner boundary to be a 45° oblique
plane; see the yellow rhombus in Fig. 2(b). In this way,
the tangential electric fields of both modes projected
onto this plane (elliptic arrow) can be conserved. The
oblique plane serves as a reflective mirror that reflects
the incident LH wave propagating along the z direction
into an RH wave propagating along the x direction. Since
the spatial distributions and tangential electric/magnetic
fields match well between two waveguide modes, high
transmittance through this waveguide bend is expected.

In order to demonstrate the idea, we calculated the
transmission spectra through two bend waveguides pro-
posed in Fig. 2 using the finite-difference time-domain
method [19]. The diamond PhC with a size of 10a x 10a x
10a was simulated, at the center of which a 10a-long LH
straight waveguide was located. An ex-polarized source
placed la below the waveguide entrance, emitting a
Gaussian pulse with a center frequency of 0.48(c/a) and
a pulsewidth of 0.4(c/a). The detector at la above the
waveguide exit received the transmitted wave. Configu-
rations for simulating the waveguide bend are the same,
except the waveguide geometry and the position of the
detector.

The transmission spectra for bend waveguides are
plotted in Figs. 3(a) and 3(b) by red curves. Transmission
spectra for a straight waveguide along the z direction are
also shown by black curves for reference. Figure 3(a)
shows the transmission spectrum for the bend waveguide
of Fig. 2(a), where both incident and transmitted wave-
guides are LH. The transmission in the polarization gap
(highlighted by the light blue box) drops a lot in compari-
son with the straight waveguide. On the other hand, the
transmission for the bend waveguide in Fig. 2(b) is
shown in Fig. 3(b). We can see that the transmissions for
the bend waveguide and the straight waveguide are al-
most the same in the polarization gap, which verifies the
strong coupling between the LH vertical mode and the
RH horizontal mode. It can be inferred that the coupling
between them should also be strong outside the polari-
zation gap. So is the coupling between the RH vertical
mode and the LH horizontal mode, as their spatial distri-
butions and tangential electric/magnetic fields match
well. The ex-polarized source excites both LH and RH
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Fig. 3. Transmission spectra (red) for three types of bend
waveguides: (a) WGZ-WGX (L2L) shown in Fig. 2(a),
(b) WGZ-WGX (L2R) shown in Fig. 2(b), and (c) double-bend
waveguide WGZ-WGY-WGX (L2L). The transmission spectra
for the straight waveguide WGZ (L2L) are also plotted (black).
Here, L2L means both the input and output waveguides are LH.
L2R means that the input and output waveguides are LH and
RH, respectively. The light blue box highlights the polarization
gap. The blue line in (b) refers to WGZ-WGX (L2R) with two
PEC obstacles inside.

vertical modes in this frequency region, and then these
two modes couple to the RH and LH horizontal modes,
respectively. Therefore, transmission through the bend
waveguide of Fig. 2(b) seemingly should equal the one
through the straight waveguide. But the bend transmis-
sion outside the polarization gap is not as high as straight
waveguide, a fact that is in contrast to the case inside the
gap. The reason is that the LH (RH) upward vertical
mode can also couple to RH (LH) downward mode at
the bend corner, as both of their electric/magnetic fields
rotate counterclockwise (clockwise). On the other hand,
the high bend efficiency in the polarization gap is due to
not only the strong coupling between the LH vertical
mode and the RH horizontal mode, but also the backscat-
tering suppression effect, because field vectors of the
upward mode and the downward mode always rotate
in opposite directions.

Figure 4 depicts the amplitude profile of energy flow
for the bend waveguide in the xz plane, in which a con-
tinuous ex-source with a frequency of 0.49(c/a) is la
beneath the waveguide entrance. Figures 4(a) and 4(b)
correspond to the bend geometries in Figs. 2(a) and 2(b),
respectively. For the first-type of bend, the energy flow in
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Fig. 4. Amplitude profile of energy flow for two types of single bend waveguides in the xz plane at the frequency of 0.49(c/a): (a)
and (b) are for the bend geometries in Figs. 2(a) and 2(b), while (c) is the same as (b) but with two PEC slabs inside.

the z direction waveguide is relatively small, as most of
the LH wave is reflected by bend corner. The energy
flow of the upward LH wave cancels out with the re-
flected wave. However, no obvious backscattering can
be observed for the second-type of bend; see Fig. 4(b).

To confirm the transport robustness against the iso-
tropic scatterer, two perfect electronic conductor (PEC)
slabs with size of 0.3a x 0.3a x 0.1a are inserted into the
bend waveguide in Fig. 4(b). One slab locates at the
center of the vertical waveguide, and the other is in the
horizontal waveguide. The simulated energy flow is
shown in Fig. 4(c). The energy flow is almost the same
as in Fig. 4(b), except that it evades the PEC slabs. This
indicates that no obvious backscattering is introduced by
the isotropic obstacles. This is also confirmed by the
calculated transmission spectrum; see the blue line in
Fig. 3(b).

Note that the waveguide bend in Fig. 2(b) can reverse
the polarization state of the guided wave, as the guided
wave in the transmitted waveguide is RH polarized
rather than LH polarized. This may bring about problems
when connecting two circuits of the same handedness.
This can be solved in a simple way. It seems that the
LH chiral waveguide along the 2z direction cannot couple
directly to another LH waveguide along the «x direction.
But the LH waveguide in the 2 direction can still couple
to another one in the x direction through two bends:
the waves first couple to the RH waveguide in the y
direction and then to another LH waveguide in the x di-
rection. The transmitted spectrum for this double-bend
waveguide is illustrated in Fig. 3(c) by a red line, and high
transmission is also preserved in the polarization gap as
expected.

In conclusion, we designed a chiral defect waveguide
and waveguide bend geometry in diamond PhCs. We
achieved a polarization gap of defect modes with a rela-
tive bandwidth of 5.9% where robust transport occurs.
Transmission spectra through the bend waveguide and a
straight waveguide were compared to demonstrate bend
efficiency, and we found that the coupling coefficient in
the polarization gap was intensively preserved by the
backscattering suppression effect.
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