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Second-order topological photonic crystals support localized corner modes that deviate from the conventional
bulk-edge correspondence. However, the frequency shift of corner modes spanning the photonic band gap has not
been experimentally reported. Here, we observe the gapless corner modes of photonic crystal slabs within a
parameter space by considering translation as an additional synthetic dimension. These corner modes, protected
by topological pumping in synthetic translation dimensions, are found to exist independently of the specific
corner configuration. The gapless corner modes are experimentally imaged via the near-field scanning measure-
ment and validated numerically by full-wave simulations. We propose a topological rainbow with gradient trans-
lation, demonstrating the ability to extract and separate specific frequency components of light into different
spatial locations. Our work contributes to the advancement of topological photonics and provides valuable in-
sights into the exploration of gapless corner modes in synthetic dimensions. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.506167

1. INTRODUCTION

Topological photonic crystals (PCs) have emerged as a rapidly
growing field of research in the past few years, holding great po-
tential for revolutionizing the way we mold the flow of light
[1–9]. A key characteristic of topological PCs is the presence
of topologically protected boundary modes localized at the crys-
tal’s boundary. According to the conventional bulk-edge corre-
spondence, these topological boundary modes are generally
one dimension lower than the topological systems themselves.
For instance, one-dimensional topological systems host zero-
dimensional topological modes [10–12], while two-dimensional
topological systems host one-dimensional topological edge modes
[13–15]. These topological boundary modes exhibit robustness
against various defects and perturbations, rendering them highly
resilient. However, certain perturbations targeting their topologi-
cal protection mechanisms can compromise their robustness.
Strong symmetry-breaking or large-scale structural deformation
is examples of such perturbations that can disrupt the robustness
of the topological modes. For instance, edge modes of valley pho-
tonic crystals are resilient against perturbations that do not mix
the two valleys [16,17]. On the contrary, the sidewall roughness
of valley photonic crystals can introduce backscattering and im-
pact the robustness of topological edge modes [18].

Recent advancements have unveiled a novel class of topo-
logical phases known as higher-order topological phases, which

deviate the traditional bulk-edge correspondence [19–23]. In
contrast to conventional topological materials, the boundary
modes of higher-order topological materials are more than one
dimension lower than the bulk. For example, two-dimensional
second-order topological photonic crystals (STPCs) can host
zero-dimensional corner modes [24–36]. These corner modes
are localized at the intersection of two lower-dimensional boun-
daries within the STPCs and hold significant promise for vari-
ous applications, including on-chip cavities [37–39], advanced
lasers [40,41], and nonlinear optics [42–44]. However, in real-
istic PC cavities, there are some perturbations causing the fre-
quency shifts of the corner modes. For example, the translation
of rods or holes in PCs is a common fabrication error during the
fabrication and also induces frequency shifts of the corner
modes [41,45]. Although the translation dependent frequency
shift is hard to predict, a recent theoretical proposal has shown
that frequency shift of corner modes spanning the entire band
gap (i.e., gapless corner modes) can be achieved by considering
the translation as an additional synthetic dimension [46]. Note
that the introduction of synthetic dimensions [47–49] in pho-
tonic systems enriches the exploration of topological phase of
light in higher-dimensional space beyond three-dimensional
real-space [50–56]. The topology in synthetic translation space
ensures the gapless modes, e.g., the gapless boundary modes
from two-dimensional synthetic space [57], and gapless corner
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and dislocation modes from four-dimensional synthetic space
[46]. These gapless modes facilitate the topological rainbow to
separate different topological modes into distinct locations
[58,59]. However, the gapless corner modes in Ref. [46] are
based on ideal two-dimensional PCs without direct experimen-
tal evidence. Here, we observe the gapless frequency shift of
corner modes in the PC slab. The experimental paradigm de-
veloped for the PC slab is adaptable to optical frequencies, of-
fering promising avenues for frequency-tunable nanocavity.
As a practical application, we propose a topological rainbow
device with a PC slab, which can configure the corner modes
of different frequencies at different locations.

In this work, the PC slab consists of periodic ceramic
square-rods placed on a metallic substrate. By introducing
the translation (Δx, Δy) into the PC slab, we can tune the
frequency of the corner mode, thus demonstrating the exist-
ence of the gapless corner mode in synthetic translation
dimensions. To validate our findings, we employ the near-
field scanning measurements to experimentally image the
localized corner modes. We systematically explore and im-
age corner modes in PC slabs under different translational
deformations, confirming the frequency shift of the corner
mode. All experimental results are further supported by full-
wave simulations, ensuring the reliability of our findings.
Our findings demonstrate the potential for the flexible

frequency modulation of corner modes in synthetic translation
dimensions.

2. GAPLESS CORNER MODES IN SYNTHETIC
TRANSLATION DIMENSIONS

To illustrate the presence of corner modes and their gapless
dispersion in synthetic translation dimensions, we first consider
the corner formed between a two-dimensional (2D) STPC and
an ordinary photonic crystal (OPC) [Fig. 1(a)]. The unit cell
of the STPC consists of four square-rods with a side length of
3.5 mm. The distances between two neighboring rods in the in-
plane directions are dx � d y � 14.5 mm. In contrast, the unit
cell of the OPC consists of a square-rod with a side length of
7 mm. The lattice constant of both PCs is a � 18 mm, and the
relative permittivity of the rod is 5.9. The topology of these two
PCs is given by the 2D Zak phase Z � �Zx ,Zy� [25,26]:

Z j �
Z

dkxdkyTr�Â�k��, (1)

where j � x or y and Âj�k� � ihu�k�j∂kj ju�k�i, with ju�k�i
being the periodic Bloch function. The 2D Zak phases of
the STPC and OPC are (π, π) and (0, 0), respectively, enabling
the localized corner modes when the STPC and OPC are
placed together to form a corner. The eigenfrequencies of this

Fig. 1. Corner mode and its gapless dispersion in synthetic translation dimensions. (a) Schematic illustration of the corner between STPC and
OPC. Parameters: lattice constant a � 18 mm; the side length of square-rod of OPC (blue region) is 7 mm, while that of STPC (orange region) is
3.5 mm; in-plane distances between two neighboring rods in STPC are dx � d y � 14.5 mm; relative permittivity of rods εr � 5.9. (b) Calculated
eigenfrequencies of configuration in (a). The corner, edge, and bulk modes are denoted by red, blue, and gray points, respectively. Inset: simulated
jEz j2 field of the corner mode (outlined by a green circle). (c) Schematic illustration of the corner between the translated OPC and the untranslated
OPC. All square-rods of the translated OPC are translated away from the center of the unit cell by (Δx, Δy). (d) The gapless dispersion of corner
modes of configuration in (c) when Δx � Δy. Corner modes outlined by two green circles at Δx � Δy � −9 and 9 mm are the same as the corner
mode in (b). (e) Schematic illustration of the corner between the translated OPC and PEC to confirm the robustness of the existence of gapless
corner modes. (f ) The gapless dispersion of corner modes of configuration in (e) when Δx � Δy.
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corner configuration are calculated and presented in Fig. 1(b).
The corner mode is denoted by the red point, while the edge
and bulk modes are denoted by blue and gray points, respec-
tively. The inset of Fig. 1(b) shows the jEz j2 field of the corner
mode, demonstrating strong field confinement at the corner.

The unit cell of the OPC can also be considered to consist of
four square-rods with a side length of 3.5 mm and the in-plane
distances of d x � d y � 3.5 mm. As a result, the unit cell of the
STPC can be obtained through the unit cell of the OPC by
changing the in-plane distances of dx and d y from 3.5 mm
to 13.5 mm [Fig. 7(b) in Appendix A]. Alternatively, the
STPC’s unit cell can be obtained by translating the dielectric
rod within the OPC along two directions, i.e., Δx and Δy.
Note that, when the dielectric rod traverses the unit cell during
translation, the patch exiting one boundary re-enters through
the corresponding periodic boundary, ensuring the integrity
of the entire bulk crystal remains unchanged (Fig. 6 in
Appendix A). As the translations Δx and Δy are cyclic and re-
stricted to [−a∕2, a∕2], they can be considered as two addi-
tional Bloch momenta. Combining two original momenta
of kx and ky, we can define a four-dimensional synthetic
(kx , Δx, ky, Δy) space [46]. In contrast to the 2D Zak phase
defined within the two-dimensional (kx , ky) space, the topo-
logical invariant within the four-dimensional (kx , Δx, ky, Δy)
space is the second Chern number [60]:

C �2� � 1

32π2

Z
εlmnoBlm�kx ,Δx, ky,Δy�

× Bno�kx ,Δx, ky,Δy�dkxdΔxdkydΔy, (2)

where εlmno is the Levi-Civita symbol and each index l , m, n, o
takes values of kx, Δx, ky, or Δy. The second Chern number is
nonzero and quantized to be 1, implying the gapless corner
modes in synthetic translation dimensions by the bulk-edge
correspondence. To see this, we replace the STPC with a trans-
lated OPC whose square-rods are all translated away from the
center of the unit cell by (Δx,Δy) [Fig. 1(c)]. For simplicity, we
consider the case of Δx � Δy and calculate the eigenfrequen-
cies of corner modes with different Δx values [denoted by red
in Fig. 1(d)]. As Δx varies from −9 to 9 mm, the corner modes
bifurcate from the bulk band edge and traverse the entire pho-
tonic band gap. It is noteworthy that the corner modes high-
lighted by two green circles at Δx � Δy � −9 and 9 mm
are the same as the corner mode presented in Fig. 1(b).
This indicates that the corner mode in the STPC is a lower-
dimensional manifestation of gapless corner modes under trans-
lational deformation. Note that the term “gapless” used here
is related to the synthetic translation dimensions, not the
momentum dimension k. The slope of corner mode dispersion
is negative, but it only represents the frequency dependence
of the corner mode frequency and the translation (Δx, Δy).
In fact, corner modes with tunable frequencies can also be
obtained by changing d x and d y [Fig. 7(c) in Appendix A].
However, the dispersion under variable d x and d y is limited
to a small frequency range. We notice that another type of
translation, quantified by the parameter g, has been introduced
to the STPC to enhance the quality factor of the corner mode
[41,45]. Here, g represents the gap distance between the trivial
and nontrivial parts of the PC slab, which can be tuned for

creating high-quality topological nanocavities. However, such
translation also fails to ensure the gapless frequency shift of
corner mode without altering the shape of air holes (or dielec-
tric rods) of STPC. The existence of gapless corner modes is
robust and determined by the topological pumping in synthetic
translation dimensions [61], which is independent of specific
boundary conditions. To further illustrate this point, we re-
place the OPC with a trivial perfect electric conductor (PEC)
[Fig. 1(e)] and calculate its corner mode dispersion as a func-
tion of translation [Fig. 1(f )]. Remarkably, gapless corner
modes that traverse the entire photonic band gap are still sup-
ported whenΔx � Δy (red curve), and the complete frequency
diagram of the corner modes in (Δx, Δy) space is shown in
Fig. 8 in Appendix A. When (Δx, Δy) departs from (0 mm,
0 mm), the corner mode’s frequency keeps increasing, and
its eigen fields are first extended, then localized, and finally
are extended again, showing a crucial characteristic of topologi-
cal pumping. The frequency shift of corner mode is a boundary
effect, but the gapless frequency shift is a topological effect.
To clarify this point, we investigate the evolution of the gapless
corner modes by adding air layers of different thicknesses weak-
ening the boundary effect (Fig. 9 in Appendix A).

3. REALIZATION ON PHOTONIC CRYSTAL
SLABS

To observe gapless corner modes, we implement the above idea
in the PC slab that utilizes both the in-plane periodicity and
out-of-plane total reflection to confine light in three dimen-
sions [Fig. 2(a)]. The unit cell of the PC slab consists of a di-
electric square-rod with the relative permittivity of εr � 9
placed on a metallic substrate. The in-plane lattice constant
is a � 18 mm, and the side length and height of dielectric rods
are b � 7 mm and h � 13.5 mm, respectively. When the rel-
ative permittivity is configured from 5.9 to 9, the bulk bands
and eigen fields of this PC slab resemble those of the 2D PC
presented in Fig. 1 (Fig. 10 in Appendix B), indicating the
potential existence of gapless corner modes in the PC slab.
To explore this possibility, we construct the “corner” by placing
two metallic bars along the x and y directions next to the PC
slab. The “corner” wrapped by the OPC should also has gapless
corner modes and be more predictable, so we do not perform
the observation. We first calculate the eigenfrequencies for the
sample with �Δx,Δy� � �−2 mm, −4 mm� [Fig. 2(b)]. Along
the frequency axis, the bulk, edge, and corner modes are de-
noted by gray, blue, and red points, respectively. The frequency
range of the band gap is outlined by a cyan rectangle. The jEz j2
fields at z � 0 mm for five representative bulk, edge, and
corner modes are shown in Fig. 2(c). These fields show the
frequency-dependent mode evolution. The bulk modes extend
throughout the crystal, the edge modes propagate along x (or y)
direction while being confined along the other direction, and
the in-gap corner mode with a frequency of 6.66 GHz is
localized in both directions. To achieve gapless corner modes,
we translate the PC slab with respect to two static metallic
bars. For simplicity, we focus on the representative case
of Δx � Δy. Figures 2(d)–2(f ) show the eigenfrequencies
and jEz j2 fields of corner modes for the samples with
�Δx,Δy�� �−3 mm, −3 mm�, �Δx,Δy�� �−4 mm,−4 mm�,
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and �Δx,Δy� � �−5 mm, −5 mm�. In these three samples,
corner modes are found within the bulk band gap and localized
around the corner. In addition, the frequencies of corner
modes increase from 6.67 GHz to 6.88 GHz to 7.07 GHz
as Δx decreases, showcasing the manifestation of gapless corner
modes in PC slabs.

4. EXPERIMENTAL OBSERVATION

The PC slab is free of the metallic cover and in favor for the
observation of eigen modes. To observe the corner modes, we
implement the experiment with the microwave near-field scan-
ning platform [Fig. 3(a)]. The setup includes a source antenna
and a probe antenna connected to a vector network analyzer
via a coaxial-cable. The probe antenna, mounted on an auto-
matic stepper motor, collects signals at z � 15 mm, which are
sent back to the vector network analyzer and a computer for
imaging the eigen modes. The sample consists of periodic
ceramic rods and two metallic bars, which are placed on the

metallic substrate. The corner of the sample is focused, and
the source antenna is positioned at the center of four rods
closest to the corner. We first consider the sample with
�Δx,Δy� � �−2 mm, −4mm� to demonstrate the capability
of imaging the eigen modes. The experimental jEz j2 fields
of four representative eigen modes are shown in Fig. 3(b).
At the frequency of 6.32 GHz, the bulk mode exhibits an ex-
tended field within the bulk PC slab. At 6.51 GHz, the y edge
mode shows a confined field localized around the y edge,
i.e., the boundary perpendicular to the y-axis. At 6.40 GHz,
the mixed x & y edge mode exhibits an extended field along
both the x and y edges. This is induced by the field overlapping
between the x edge mode and the y edge mode at the same
frequency (see details in Fig. 11 in Appendix C). Importantly,
at 6.71 GHz, a strongly confined field localized at the corner is
observed, confirming the existence of corner mode. To validate
these experimental results, we also perform the full three-
dimensional numerical simulation under the same excitation
settings [Fig. 3(c)]. The simulated jEz j2 fields closely reproduce

Fig. 2. Realization of gapless corner modes based on PC slab. (a) Schematic illustration of the corner between the PC slab and two metallic bars.
Both the PC slab and metallic bars are placed on a metallic substrate. Parameters: lattice constant a � 18 mm; in-plane side length of dielectric rods
b � 7 mm; height of dielectric rods h � 13.5 mm; and relative permittivity of dielectric rods εr � 9. (b) Calculated eigenfrequencies for the sample
with �Δx,Δy� � �−2 mm, −4 mm�. The cyan region represents the bulk band gap of PC slab. The eigen modes whose jEz j2 fields will be shown in
(c) are outlined by circles. (c) jEz j2 fields at z � 0 mm for bulk, edge, and corner modes in (b). (d)–(f ) Calculated eigenfrequencies and jEz j2 fields
of the corner modes for the sample with �Δx,Δy� � �−3 mm, −3 mm�, �−4 mm, −4 mm�, and �−5 mm, −5 mm�.
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the experimental observations, providing further confirmation
of the validity of the experimental results.

To further demonstrate the presence of gapless corner
modes in synthetic translation dimensions, we perform mea-
surements on samples with Δx � Δy. Since the source antenna
is placed near the corner, there are field enhancements at
frequencies where no eigen modes are expected. In order to
accurately identify the resonantly excited corner modes, we de-
fine the response intensity R � jEz j2corner∕jEz j2source, represent-
ing the ratio of the field intensity at the corner to that at the
source. The positions of the corner and source are illustrated
in the inset of Fig. 4(a). The response intensity reaches its
maximum value when the corner mode is excited, and the peak
of the response spectrum confirms the existence of the corner
mode. Figure 4(a) shows the response intensity spectrum for
the sample with �Δx,Δy� � �−3 mm, −3 mm�, where the red
line shows the simulated result and the blue shows the exper-
imental result. The experimental and simulated frequencies
of corner modes are 6.71 GHz and 6.70 GHz, respectively,
demonstrating consistency between these two results. The mea-
sured and simulated jEz j2 fields of the excited corner modes for
this sample are shown in Figs. 4(b) and 4(c), respectively,
revealing a strongly localized field around the corner. Similarly,
the response spectra, as well as the measured and simulated

jEz j2 fields, are presented for the sample with �Δx,Δy� �
�−4 mm, −4 mm� in Figs. 4(d)–4(f ), and for the sample with
�Δx,Δy� � �−5 mm, −5 mm� in Figs. 4(g)–4(i). The fre-
quencies of these corner modes are almost the same (with
an error less than 0.8%), and the jEz j2 fields of these corner
modes exhibit negligible differences, confirming the high
consistency between the experimental and simulated results.
By summarizing the results in Figs. 4(a), 4(d), and 4(g), we
observe that the frequencies of corner modes increase from
6.71 GHz to 6.89 GHz and 7.17 GHz as (Δx, Δy) changes
from (−3 mm, −3 mm) to (−4 mm, −4 mm) and (−5 mm,
−5 mm). When �Δx,Δy� � �0 mm, 0 mm� and (−5.5 mm,
−5.5 mm), we observe the disappearance of the corner mode
in the band gap (Fig. 12 in Appendix D). This provides clear
evidence of the observation of gapless corner modes in synthetic
translation dimensions.

Gapless corner modes can be employed to spatially separate
topological corner modes. A recently published research work
reported an acoustical topological rainbow by employing the
same idea of translational deformation [59]. Similarly, we pro-
pose a photonic topological rainbow with gradient translation,
taking advantage of the strong localization and gapless nature of
corner modes in the PC slab. As shown in Fig. 5(a), we present
a schematic illustration of the topological rainbow, which is

Fig. 3. Observation of eigen modes of the corner between the PC slab and two metallic bars. (a) Left panel: photograph of the fabricated
experimental sample. Right panel: photograph of the corner of the sample. (b) Experimental jEz j2 fields at z � 15 mm of four eigen modes
for the sample with �Δx,Δy� � �−2 mm, −4 mm�, representing the bulk mode, the edge mode, and the corner mode. (c) Simulated jEz j2 fields
of four representative eigen modes, which are consistent with the experimental results.
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divided into six gradient regions (I, II, III, IV, V, VI) and one
non-gradient region (VII). Region VII serves as a barrier region
formed by OPC to provide a band gap preventing the leakage
of light. In region I, there are a total of 5 × 5 dielectric rods.
The dielectric rods in the first to fifth columns are translated by
(Δx1, Δy1), (3Δx1∕4, 3Δy1∕4), (Δx1∕2, Δy1∕2), (Δx1∕4,
Δy1∕4), and (0, 0), respectively. This gradient architecture offers
two advantages: first, the bottom-left corner of region I can be
approximated to form a corner with translation (Δx1, Δy1); sec-
ond, the right side of region I can be considered as OPC to assist
in forming the corner of the next region. Regions II, III, IV, V, VI
are designed based on the similar principle. The (Δxn, Δyn)

(n � 1, 2, 3, 4, 5, 6) for the six gradient regions are (−6.5 mm,
−6.5 mm), (7.5 mm, −7.5 mm), (−8.3 mm, −8.3 mm),
(−8.9 mm, −8.9 mm), (−9.3 mm, −9.3 mm), and (−9.5 mm,
−9.5 mm), respectively. They respectively support six corner
modes of different frequencies. Consequently, when light is in-
cident from the bottom, the frequency component around the
frequency of the corner mode will be trapped in the corre-
sponding corner, as shown in Fig. 5(b). Note that the variation
of (Δxn, Δyn) is not linear. Owing to the high quality factor of
corner modes, we can effectively extract and separate two fre-
quency components (7.28 and 7.34 GHz) with a frequency
interval of 0.06 GHz into distinct spatial locations.

Fig. 4. Observation of gapless corner modes within the translation dimensions. (a) Response spectrum for the sample with
�Δx,Δy�, � �−3 mm, −3 mm�. The red line is the simulated result, and the blue is the experimental result. The cyan region represents band
gap. The response intensity is defined as jEz j2corner∕jEz j2source, whose peak indicates the excitation of corner mode. For the sample with
�Δx,Δy� � �−3 mm, −3 mm�, the central frequencies of corner modes are 6.70 GHz (simulation) and 6.71 GHz (experiment). Inset: illustration
of two positions at which electric field is used to determine the response intensity. (b), (c) Measured and simulated jEz j2 fields of the excited corner
mode for the sample with �Δx,Δy� � �−3 mm, −3 mm�. (d)–(f ) and (g)–(i) are similar to (a)–(c), while (d)–(f ) correspond to the sample with
�Δx,Δy� � �−4 mm, −4 mm� and (g)–(i) correspond to the sample with �Δx,Δy� � �−5 mm, −5 mm�.
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5. CONCLUSION

In contrast to previous works predominantly focused on the
“corner mode in a single structure,” this work delves into
the “corner modes in multiple structures.” Starting from the
STPC, we find that topological corner modes exhibit robust
gapless dispersion in synthetic translation dimensions and di-
rectly observe the gapless corner modes in PC slabs system.
In dielectric photonic crystal, the breaking of chiral sym-
metry destroys the zero-energy character of the corner mode.
Although it allows the corner mode to be embedded in bulk
spectrum (manifested as BICs), the underlying mechanisms
are different from the gapless corner modes. Utilizing the
microwave near-field scanning platform, we map the mode evo-
lution of the sample over a range of about 6–7 GHz from the
bulk mode to the topological corner mode within the band gap.
We verify the gapless characteristic of corner modes by trans-
lating rods and measuring response intensities. All measured
results are in good agreement with the simulated results. The
demonstrated gapless corner modes under synthetic transla-
tional deformations are universal and can be applied to other
lattice structures. Our study demonstrates a feasible strategy for
accessing and tuning topological corner modes at microwave
frequencies. Although our implementation involved a metal-
containing microwave system, it can be extended to nanopho-
tonic systems working at optical frequencies. For example, the
in-plane excitation of a topological corner mode at a telecom-
munications wavelength has been implemented by a cross-
coupled PC cavity based on STPC [38]. Applying the same
translation method to this nanophotonic structure, we can also
observe the gapless corner modes at optical frequencies and fur-
ther explore its applications in nonlinear optics and quantum
optics.

APPENDIX A: TOPOLOGICAL NATURE
OF GAPLESS CORNER MODES

Here, we discuss the topological nature of gapless corner
modes. To begin with, we clarify the “translation” discussed
in the main text. As shown in Fig. 6, left panel, we first
present a perfect photonic crystal of square lattice, but it is
divided into undeformed region (blue) and deformed region
(orange). As shown in Fig. 6, right panel, we then apply

Fig. 5. Realization of photonic topological rainbow. (a) Schematic
illustration of topological rainbow. (b) Calculated jEz j2 fields at
z � 0 mm for different frequencies.

Fig. 6. Schematic illustration of the translation of dielectric rods.
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the same translation (Δx, Δy) to each dielectric rod in the
deformed region (expressed by the difference between the co-
ordinates of the dielectric rod before and after the translation:
Δx � xdeformed − xundeformed, Δy � ydeformed − yundeformed). The
unit cells are fixed during the translation, while dielectric rods
are translated by (Δx, Δy) within their unit cell. When the
translation is large enough, the dielectric rods intersect the
boundary of their unit cell. The patch exiting one boundary
re-enters through the corresponding periodic boundary, ensur-
ing the integrity of the entire bulk crystal remains unchanged.
For example, the patches 1, 2, 3 are moved out from the unit
cell and seamlessly moved in through the corresponding peri-
odic boundary.

As shown in Fig. 1, we show that such a translation acting as
the synthetic translation dimensions can robustly ensure the
gapless frequency shift of corner mode. In Figs. 7(a)–7(c),
we present a counterexample to show that the gapless corner
modes are not ubiquitous: we observe the frequency shift of
corner mode by changing the in-plane distances dx and d y
of the four square-rods and find that the frequency shift of
the corner mode only covers part of the band gap when
d x � d y. This situation is quite different from the gapless cor-
ner modes shown in Figs. 7(d)–7(f ), i.e., Figs. 1(c) and 1(d)
in the main text.

The nonzero second Chern number is calculated in the four-
dimensional synthetic space by the Eq. (2), and the gapless cor-
ner modes can be understood through dimensional reduction.
Specifically, when the translational invariances of kx and ky

are broken by truncated boundaries, the (4−2)-dimensional
topological boundary modes in the (Δx, Δy) space are triggered
by bulk-edge correspondence, which are zero-dimensional cor-
ner modes in real space. Therefore, the existence of gapless
corner modes is guaranteed in (Δx, Δy) space. In Fig. 8, we
show the frequency diagrams of the corner modes in (Δx, Δy)
space under the OPC and PEC boundary conditions, where the
non-gray regions indicate the presence of corner modes. The
frequencies of these corner modes are indicated by color, with
blue indicating the lower bulk band edge frequency and red
indicating the higher bulk band edge frequency. The transition
from blue to red signifies the existence of gapless corner modes
in (Δx, Δy) space. The gapless dispersion of corner modes
of Δx � Δy (marked in diagonal dashed line) is shown in
Figs. 1(d) and 1(f ) in the main text.

We note that the frequency shift of the corner mode is a
boundary effect but the gapless frequency shift is a topological
effect. Therefore, we can insert air layers of different thicknesses
weakening the boundary effect to verify that the gapless corner
modes are not caused by the boundary effect, as shown in
Fig. 9. It can be seen that the gapless corner modes persist with
the increasing thickness of the air layer; however, the gap be-
tween the corner modes and edge modes diminishes until the
corner modes fully degenerate into the edge modes. The dis-
appearance of the corner modes is understandable because the
air layer is not a good insulator for the electromagnetic waves.
Otherwise, the gapless corner modes will persist regardless of
the width of the inserted insulator.

Fig. 7. Comparison of corner mode dispersions obtained by varying (dx , d y) or (Δx, Δy). (a) Schematic illustration of the corner between the
STPC and OPC. Here, dx and d y are varied as parameters, no longer fixed at d x � d y � 14.5 mm. (b) Schematic illustration of the unit cells of PC
as (dx , d y) changes from (3.5 mm, 3.5 mm) to (14.5 mm, 14.5 mm). (c) Non-gapless dispersion of corner modes of configuration in (a) when
d x � d y . (d) Schematic illustration of the corner between the translated OPC and the untranslated OPC [same as Fig. 1(c) in the main text].
(e) Schematic illustration of the unit cells of translated OPC as (Δx, Δy) changes from (−9 mm, −9 mm) to (9 mm, 9 mm). (f ) Gapless dispersion of
corner modes of configuration in (d) when Δx � Δy [same as Fig. 1(d) in the main text].
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Fig. 9. Corner mode dispersion with inserted air layers of different thicknesses. (a) Schematic illustration of the corner with an inserted air
layer between the translated OPC and PEC. The thickness of the air layer is denoted by d air. (b) The gapless dispersion of corner modes
with d air � 0 mm. (c) The gapless dispersion of corner modes with d air � 9 mm. (d) The gapless dispersion of corner modes with
d air � 18 mm.

Fig. 8. Frequency diagrams of the corner modes in (Δx,Δy) space. (a) Top panel, schematic illustration of the corner between the translated OPC
and the untranslated OPC [same as Fig. 1(c)]. Bottom panel, frequency diagram of corner modes in (Δx, Δy) space under the OPC boundary
condition. (b) Top panel, schematic illustration of the corner between the translated OPC and PEC [same as Fig. 1(e) in the main text]. Bottom
panel, frequency diagram of corner modes in (Δx, Δy) space under the PEC boundary condition.
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APPENDIX B: THE PHOTONIC BAND
STRUCTURE OF A PHOTONIC CRYSTAL SLAB

The results in Fig. 1 are based entirely on 2D PC. The experi-
ments of the 2D PC require a metallic cover to prevent the
radiation of electromagnetic waves into the free space. This
metal cover not only complicates the experimental setup but
also hinders the direct mapping of the electromagnetic field.
Therefore, we propose the observation of gapless corner modes
based on a PC slab consisting of dielectric rods placed on a
perfect electrical conductor. As shown in Fig. 10, we simulta-
neously calculate the band structures and the eigen fields

(the first band) of the 2D PC and the PC slab. And both
the band structures and eigen fields show the similarity between
the 2D PC and the 2D PC slab, indicating the potential exist-
ence of gapless corner modes in the PC slab.

APPENDIX C: THE CLARIFICATION OF MIXED
X & Y EDGE MODE

In Fig. 3, we experimentally observe the mixed x & y edge
mode, which can be explained by the field overlapping between
the x edge mode and the y edge mode at the same frequency.
As shown in Fig. 11, we simulate the edge mode dispersion

Fig. 10. Comparison of band structures and eigen fields of the 2D PC and 2D PC slab. (a) The band structure and eigen fields (the first band)
of 2D PC, which is discussed in Fig. 1 in the main text. (b) The band structure and eigen fields (the first band) of 2D PC slab, which is applied
in Figs. 2–5 in the main text.

Fig. 11. Dispersion of x edge mode and y edge mode for the PC slab with �Δx,Δy� � �−2 mm, −4 mm�. (a) 2D schematic illustrations of the
edge between a metallic bar and the PC slab perpendicular to x and y axes, respectively. (b) The x edge mode and y edge mode dispersion.
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in ky and kx directions of the PC slab with �Δx,Δy� �
�−2 mm, −4 mm�. The x edge mode decays in the x direction
and propagates in the y direction, while the y edge mode ex-
hibits the opposite behavior. The x edge mode and y edge mode
dispersions are partially overlapped in the frequency domain.
Since the properties of edge modes are solely determined by the
corresponding boundary conditions, the x and y edge modes for
the sample with �Δx,Δy� � �−2 mm, −4 mm� in the main
text can be interpreted as a result of band projection of the
x and y edge mode dispersion here along the ky and kx direc-
tions, respectively. This accounts for the observed mixed x & y
edge mode and y edge mode in the experiment.

APPENDIX D: THE OBSERVATION OF GAPLESS
CORNER MODES

Here, we demonstrate how the corner mode appears, moves,
and disappears in the band gap as (Δx, Δy) changes. As illus-
trated in Fig. 12, when �Δx,Δy� � �0 mm, 0 mm�, the
response intensity of the corner mode is nearly zero at all
frequencies, confirming the absence of corner modes at this
translation parameter. When �Δx,Δy� � �−3 mm, −3 mm�,
a peak of the response intensity appears at 6.71 GHz, indi-
cating the emergence of corner mode within the band gap.
Furthermore, when (Δx, Δy) corresponds to (−4 mm, −4 mm)
and (−5 mm, −5 mm), the peak values of the response intensity
are 6.89 and 7.17 GHz, respectively, demonstrating the fre-
quency shift of corner mode. Finally, when �Δx,Δy� �
�−5.5 mm, −5.5 mm�, the peak of the response intensity
almost disappears, confirming that the corner modes are no
longer within the band gap. These observations provide direct
evidence for the existence of gapless corner modes in the
PC slab.
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